-
Notifications
You must be signed in to change notification settings - Fork 126
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add WeaviateEmbeddingRetriever (#412)
- Loading branch information
1 parent
ead07b3
commit be40dcb
Showing
5 changed files
with
312 additions
and
1 deletion.
There are no files selected for viewing
3 changes: 2 additions & 1 deletion
3
integrations/weaviate/src/haystack_integrations/components/retrievers/weaviate/__init__.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
from .bm25_retriever import WeaviateBM25Retriever | ||
from .embedding_retriever import WeaviateEmbeddingRetriever | ||
|
||
__all__ = ["WeaviateBM25Retriever"] | ||
__all__ = ["WeaviateBM25Retriever", "WeaviateEmbeddingRetriever"] |
80 changes: 80 additions & 0 deletions
80
.../weaviate/src/haystack_integrations/components/retrievers/weaviate/embedding_retriever.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
from typing import Any, Dict, List, Optional | ||
|
||
from haystack import Document, component, default_from_dict, default_to_dict | ||
from haystack_integrations.document_stores.weaviate import WeaviateDocumentStore | ||
|
||
|
||
@component | ||
class WeaviateEmbeddingRetriever: | ||
""" | ||
A retriever that uses Weaviate's vector search to find similar documents based on the embeddings of the query. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
*, | ||
document_store: WeaviateDocumentStore, | ||
filters: Optional[Dict[str, Any]] = None, | ||
top_k: int = 10, | ||
distance: Optional[float] = None, | ||
certainty: Optional[float] = None, | ||
): | ||
""" | ||
Create a new instance of WeaviateEmbeddingRetriever. | ||
Raises ValueError if both `distance` and `certainty` are provided. | ||
See the official Weaviate documentation to learn more about the `distance` and `certainty` parameters: | ||
https://weaviate.io/developers/weaviate/api/graphql/search-operators#variables | ||
:param document_store: Instance of WeaviateDocumentStore that will be associated with this retriever. | ||
:param filters: Custom filters applied when running the retriever, defaults to None | ||
:param top_k: Maximum number of documents to return, defaults to 10 | ||
:param distance: The maximum allowed distance between Documents' embeddings, defaults to None | ||
:param certainty: Normalized distance between the result item and the search vector, defaults to None | ||
""" | ||
if distance is not None and certainty is not None: | ||
msg = "Can't use 'distance' and 'certainty' parameters together" | ||
raise ValueError(msg) | ||
|
||
self._document_store = document_store | ||
self._filters = filters or {} | ||
self._top_k = top_k | ||
self._distance = distance | ||
self._certainty = certainty | ||
|
||
def to_dict(self) -> Dict[str, Any]: | ||
return default_to_dict( | ||
self, | ||
filters=self._filters, | ||
top_k=self._top_k, | ||
distance=self._distance, | ||
certainty=self._certainty, | ||
document_store=self._document_store.to_dict(), | ||
) | ||
|
||
@classmethod | ||
def from_dict(cls, data: Dict[str, Any]) -> "WeaviateEmbeddingRetriever": | ||
data["init_parameters"]["document_store"] = WeaviateDocumentStore.from_dict( | ||
data["init_parameters"]["document_store"] | ||
) | ||
return default_from_dict(cls, data) | ||
|
||
@component.output_types(documents=List[Document]) | ||
def run( | ||
self, | ||
query_embedding: List[float], | ||
filters: Optional[Dict[str, Any]] = None, | ||
top_k: Optional[int] = None, | ||
distance: Optional[float] = None, | ||
certainty: Optional[float] = None, | ||
): | ||
filters = filters or self._filters | ||
top_k = top_k or self._top_k | ||
distance = distance or self._distance | ||
certainty = certainty or self._certainty | ||
return self._document_store._embedding_retrieval( | ||
query_embedding=query_embedding, | ||
filters=filters, | ||
top_k=top_k, | ||
distance=distance, | ||
certainty=certainty, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
119 changes: 119 additions & 0 deletions
119
integrations/weaviate/tests/test_embedding_retriever.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
from unittest.mock import Mock, patch | ||
|
||
import pytest | ||
from haystack_integrations.components.retrievers.weaviate import WeaviateEmbeddingRetriever | ||
from haystack_integrations.document_stores.weaviate import WeaviateDocumentStore | ||
|
||
|
||
def test_init_default(): | ||
mock_document_store = Mock(spec=WeaviateDocumentStore) | ||
retriever = WeaviateEmbeddingRetriever(document_store=mock_document_store) | ||
assert retriever._document_store == mock_document_store | ||
assert retriever._filters == {} | ||
assert retriever._top_k == 10 | ||
assert retriever._distance is None | ||
assert retriever._certainty is None | ||
|
||
|
||
def test_init_with_distance_and_certainty(): | ||
mock_document_store = Mock(spec=WeaviateDocumentStore) | ||
with pytest.raises(ValueError): | ||
WeaviateEmbeddingRetriever(document_store=mock_document_store, distance=0.1, certainty=0.8) | ||
|
||
|
||
@patch("haystack_integrations.document_stores.weaviate.document_store.weaviate") | ||
def test_to_dict(_mock_weaviate): | ||
document_store = WeaviateDocumentStore() | ||
retriever = WeaviateEmbeddingRetriever(document_store=document_store) | ||
assert retriever.to_dict() == { | ||
"type": "haystack_integrations.components.retrievers.weaviate.embedding_retriever.WeaviateEmbeddingRetriever", | ||
"init_parameters": { | ||
"filters": {}, | ||
"top_k": 10, | ||
"distance": None, | ||
"certainty": None, | ||
"document_store": { | ||
"type": "haystack_integrations.document_stores.weaviate.document_store.WeaviateDocumentStore", | ||
"init_parameters": { | ||
"url": None, | ||
"collection_settings": { | ||
"class": "Default", | ||
"invertedIndexConfig": {"indexNullState": True}, | ||
"properties": [ | ||
{"name": "_original_id", "dataType": ["text"]}, | ||
{"name": "content", "dataType": ["text"]}, | ||
{"name": "dataframe", "dataType": ["text"]}, | ||
{"name": "blob_data", "dataType": ["blob"]}, | ||
{"name": "blob_mime_type", "dataType": ["text"]}, | ||
{"name": "score", "dataType": ["number"]}, | ||
], | ||
}, | ||
"auth_client_secret": None, | ||
"timeout_config": (10, 60), | ||
"proxies": None, | ||
"trust_env": False, | ||
"additional_headers": None, | ||
"startup_period": 5, | ||
"embedded_options": None, | ||
"additional_config": None, | ||
}, | ||
}, | ||
}, | ||
} | ||
|
||
|
||
@patch("haystack_integrations.document_stores.weaviate.document_store.weaviate") | ||
def test_from_dict(_mock_weaviate): | ||
retriever = WeaviateEmbeddingRetriever.from_dict( | ||
{ | ||
"type": "haystack_integrations.components.retrievers.weaviate.embedding_retriever.WeaviateEmbeddingRetriever", # noqa: E501 | ||
"init_parameters": { | ||
"filters": {}, | ||
"top_k": 10, | ||
"distance": None, | ||
"certainty": None, | ||
"document_store": { | ||
"type": "haystack_integrations.document_stores.weaviate.document_store.WeaviateDocumentStore", | ||
"init_parameters": { | ||
"url": None, | ||
"collection_settings": { | ||
"class": "Default", | ||
"invertedIndexConfig": {"indexNullState": True}, | ||
"properties": [ | ||
{"name": "_original_id", "dataType": ["text"]}, | ||
{"name": "content", "dataType": ["text"]}, | ||
{"name": "dataframe", "dataType": ["text"]}, | ||
{"name": "blob_data", "dataType": ["blob"]}, | ||
{"name": "blob_mime_type", "dataType": ["text"]}, | ||
{"name": "score", "dataType": ["number"]}, | ||
], | ||
}, | ||
"auth_client_secret": None, | ||
"timeout_config": (10, 60), | ||
"proxies": None, | ||
"trust_env": False, | ||
"additional_headers": None, | ||
"startup_period": 5, | ||
"embedded_options": None, | ||
"additional_config": None, | ||
}, | ||
}, | ||
}, | ||
} | ||
) | ||
assert retriever._document_store | ||
assert retriever._filters == {} | ||
assert retriever._top_k == 10 | ||
assert retriever._distance is None | ||
assert retriever._certainty is None | ||
|
||
|
||
@patch("haystack_integrations.components.retrievers.weaviate.bm25_retriever.WeaviateDocumentStore") | ||
def test_run(mock_document_store): | ||
retriever = WeaviateEmbeddingRetriever(document_store=mock_document_store) | ||
query_embedding = [0.1, 0.1, 0.1, 0.1] | ||
filters = {"field": "content", "operator": "==", "value": "Some text"} | ||
retriever.run(query_embedding=query_embedding, filters=filters, top_k=5, distance=0.1, certainty=0.1) | ||
mock_document_store._embedding_retrieval.assert_called_once_with( | ||
query_embedding=query_embedding, filters=filters, top_k=5, distance=0.1, certainty=0.1 | ||
) |