-
Notifications
You must be signed in to change notification settings - Fork 84
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added fastembed integration tile (#188)
* added fastembed * updated linkedin url * Update integrations/fastembed.md Co-authored-by: Bilge Yücel <[email protected]> * Update integrations/fastembed.md Co-authored-by: Bilge Yücel <[email protected]> * Update integrations/fastembed.md Co-authored-by: Bilge Yücel <[email protected]> --------- Co-authored-by: Bilge Yücel <[email protected]>
- Loading branch information
1 parent
d1b3288
commit 3969a2c
Showing
1 changed file
with
86 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,86 @@ | ||
--- | ||
layout: integration | ||
name: FastEmbed | ||
description: Use the FastEmbed embedding models | ||
authors: | ||
- name: Nicola Procopio | ||
socials: | ||
github: nickprock | ||
linkedin: https://www.linkedin.com/in/nicolaprocopio | ||
pypi: https://pypi.org/project/fastembed-haystack/ | ||
repo: https://github.com/deepset-ai/haystack-core-integrations/tree/main/integrations/fastembed | ||
type: Model Provider | ||
report_issue: https://github.com/deepset-ai/haystack-core-integrations/issues | ||
# logo: /logos/your-logo.png | ||
version: Haystack 2.0 | ||
toc: true | ||
--- | ||
### **Table of Contents** | ||
- [Overview](#overview) | ||
- [Installation](#installation) | ||
- [Usage](#usage) | ||
- [License](#license) | ||
|
||
## Overview | ||
[FastEmbed](https://qdrant.github.io/fastembed/) is a lightweight, fast, Python library built for embedding generation. | ||
|
||
1. Light & Fast | ||
* Quantized model weights | ||
* ONNX Runtime for inference via Optimum | ||
|
||
2. Accuracy/Recall | ||
* Better than OpenAI Ada-002 | ||
* Default is Flag Embedding, which is top of the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard) | ||
* List of [supported models](https://qdrant.github.io/fastembed/examples/Supported_Models/) - including multilingual models | ||
|
||
|
||
## Installation | ||
|
||
```bash | ||
pip install fastembed-haystack | ||
``` | ||
|
||
## Usage | ||
### Components | ||
|
||
You can use Fastembed models with two components: [FastembedTextEmbedder](https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/fastembed/src/haystack_integrations/components/embedders/fastembed/fastembed_text_embedder.py) and [FastembedDocumentEmbedder](https://github.com/deepset-ai/haystack-core-integrations/blob/main/integrations/fastembed/src/haystack_integrations/components/embedders/fastembed/fastembed_document_embedder.py). | ||
|
||
To create semantic embeddings for documents, use `FastembedDocumentEmbedder` in your indexing pipeline. For generating embeddings for queries, use `FastembedTextEmbedder`. | ||
|
||
### Example | ||
|
||
Below is the example indexing pipeline with `InMemoryDocumentStore`, `InMemoryEmbeddingRetriever`, `FastembedTextEmbedder` and `FastembedDocumentEmbedder`: | ||
|
||
```python | ||
from haystack import Document, Pipeline | ||
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever | ||
from haystack.document_stores.in_memory import InMemoryDocumentStore | ||
from haystack_integrations.components.embedders.fastembed import FastembedDocumentEmbedder, FastembedTextEmbedder | ||
|
||
document_store = InMemoryDocumentStore(embedding_similarity_function="cosine") | ||
|
||
documents = [ | ||
Document(content="My name is Wolfgang and I live in Berlin"), | ||
Document(content="I saw a black horse running"), | ||
Document(content="Germany has many big cities"), | ||
Document(content="fastembed is supported by and maintained by Qdrant."), | ||
] | ||
|
||
document_embedder = FastembedDocumentEmbedder() | ||
document_embedder.warm_up() | ||
documents_with_embeddings = document_embedder.run(documents)["documents"] | ||
document_store.write_documents(documents_with_embeddings) | ||
|
||
query_pipeline = Pipeline() | ||
query_pipeline.add_component("text_embedder", FastembedTextEmbedder()) | ||
query_pipeline.add_component("retriever", InMemoryEmbeddingRetriever(document_store=document_store)) | ||
query_pipeline.connect("text_embedder.embedding", "retriever.query_embedding") | ||
|
||
query = "Who supports fastembed?" | ||
|
||
result = query_pipeline.run({"text_embedder": {"text": query}}) | ||
``` | ||
|
||
### License | ||
|
||
`fastembed-haystack` is distributed under the terms of the [Apache-2.0](https://spdx.org/licenses/Apache-2.0.html) license. |