Skip to content

Commit

Permalink
chore: summary fmt
Browse files Browse the repository at this point in the history
  • Loading branch information
simon-something committed Jul 26, 2024
1 parent ea280d9 commit 5555afc
Showing 1 changed file with 14 additions and 14 deletions.
28 changes: 14 additions & 14 deletions test/SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,32 +29,32 @@ Additional properties from BNum were tested independently too (with severe limit
# Notes
The bmath corresponding equations are:

`Spot price:`
$\text{spotPrice} = \frac{\text{tokenBalanceIn}/\text{tokenWeightIn}}{\text{tokenBalanceOut}/\text{tokenWeightOut}} \cdot \frac{1}{1 - \text{swapFee}}$
**Spot price:**
$$\text{spotPrice} = \frac{\text{tokenBalanceIn}/\text{tokenWeightIn}}{\text{tokenBalanceOut}/\text{tokenWeightOut}} \cdot \frac{1}{1 - \text{swapFee}}$$


`Out given in:`
$\text{tokenAmountOut} = \text{tokenBalanceOut} \cdot \left( 1 - \left( \frac{\text{tokenBalanceIn}}{\text{tokenBalanceIn} + \left( \text{tokenAmountIn} \cdot \left(1 - \text{swapFee}\right)\right)} \right)^{\frac{\text{tokenWeightIn}}{\text{tokenWeightOut}}} \right)$
**Out given in:**
$$\text{tokenAmountOut} = \text{tokenBalanceOut} \cdot \left( 1 - \left( \frac{\text{tokenBalanceIn}}{\text{tokenBalanceIn} + \left( \text{tokenAmountIn} \cdot \left(1 - \text{swapFee}\right)\right)} \right)^{\frac{\text{tokenWeightIn}}{\text{tokenWeightOut}}} \right)$$


`In given out:`
$\text{tokenAmountIn} = \frac{\text{tokenBalanceIn} \cdot \left( \frac{\text{tokenBalanceOut}}{\text{tokenBalanceOut} - \text{tokenAmountOut}} \right)^{\frac{\text{tokenWeightOut}}{\text{tokenWeightIn}}} - 1}{1 - \text{swapFee}}$
**In given out:**
$$\text{tokenAmountIn} = \frac{\text{tokenBalanceIn} \cdot \left( \frac{\text{tokenBalanceOut}}{\text{tokenBalanceOut} - \text{tokenAmountOut}} \right)^{\frac{\text{tokenWeightOut}}{\text{tokenWeightIn}}} - 1}{1 - \text{swapFee}}$$


`Pool out given single in`
$\text{poolAmountOut} = \left(\frac{\text{tokenAmountIn} \cdot \left(1 - \left(1 - \frac{\text{tokenWeightIn}}{\text{totalWeight}}\right) \cdot \text{swapFee}\right) + \text{tokenBalanceIn}}{\text{tokenBalanceIn}}\right)^{\frac{\text{tokenWeightIn}}{\text{totalWeight}}} \cdot \text{poolSupply} - \text{poolSupply}$
**Pool out given single in**
$$\text{poolAmountOut} = \left(\frac{\text{tokenAmountIn} \cdot \left(1 - \left(1 - \frac{\text{tokenWeightIn}}{\text{totalWeight}}\right) \cdot \text{swapFee}\right) + \text{tokenBalanceIn}}{\text{tokenBalanceIn}}\right)^{\frac{\text{tokenWeightIn}}{\text{totalWeight}}} \cdot \text{poolSupply} - \text{poolSupply}$$


`Single in given pool out`
$\text{tokenAmountIn} = \frac{\left(\frac{\text{poolSupply} + \text{poolAmountOut}}{\text{poolSupply}}\right)^{\frac{1}{\frac{\text{weightIn}}{\text{totalWeight}}}} \cdot \text{balanceIn} - \text{balanceIn}}{\left(1 - \frac{\text{weightIn}}{\text{totalWeight}}\right) \cdot \text{swapFee}}$
**Single in given pool out**
$$\text{tokenAmountIn} = \frac{\left(\frac{\text{poolSupply} + \text{poolAmountOut}}{\text{poolSupply}}\right)^{\frac{1}{\frac{\text{weightIn}}{\text{totalWeight}}}} \cdot \text{balanceIn} - \text{balanceIn}}{\left(1 - \frac{\text{weightIn}}{\text{totalWeight}}\right) \cdot \text{swapFee}}$$


`Single out given pool in`
$\text{tokenAmountOut} = \left( \text{tokenBalanceOut} - \left( \frac{\text{poolSupply} - \left(\text{poolAmountIn} \cdot \left(1 - \text{exitFee}\right)\right)}{\text{poolSupply}} \right)^{\frac{1}{\frac{\text{tokenWeightOut}}{\text{totalWeight}}}} \cdot \text{tokenBalanceOut} \right) \cdot \left(1 - \left(1 - \frac{\text{tokenWeightOut}}{\text{totalWeight}}\right) \cdot \text{swapFee}\right)$
**Single out given pool in**
$$\text{tokenAmountOut} = \left( \text{tokenBalanceOut} - \left( \frac{\text{poolSupply} - \left(\text{poolAmountIn} \cdot \left(1 - \text{exitFee}\right)\right)}{\text{poolSupply}} \right)^{\frac{1}{\frac{\text{tokenWeightOut}}{\text{totalWeight}}}} \cdot \text{tokenBalanceOut} \right) \cdot \left(1 - \left(1 - \frac{\text{tokenWeightOut}}{\text{totalWeight}}\right) \cdot \text{swapFee}\right)$$


`Pool in given single out`
$\text{poolAmountIn} = \frac{\text{poolSupply} - \left( \frac{\text{tokenBalanceOut} - \frac{\text{tokenAmountOut}}{1 - \left(1 - \frac{\text{tokenWeightOut}}{\text{totalWeight}}\right) \cdot \text{swapFee}}}{\text{tokenBalanceOut}} \right)^{\frac{\text{tokenWeightOut}}{\text{totalWeight}}} \cdot \text{poolSupply}}{1 - \text{exitFee}}$
**Pool in given single out**
$$\text{poolAmountIn} = \frac{\text{poolSupply} - \left( \frac{\text{tokenBalanceOut} - \frac{\text{tokenAmountOut}}{1 - \left(1 - \frac{\text{tokenWeightOut}}{\text{totalWeight}}\right) \cdot \text{swapFee}}}{\text{tokenBalanceOut}} \right)^{\frac{\text{tokenWeightOut}}{\text{totalWeight}}} \cdot \text{poolSupply}}{1 - \text{exitFee}}$$


BNum bpow is based on exponentiation by squaring and hold true because (see dapphub dsmath): https://github.com/dapphub/ds-math/blob/e70a364787804c1ded9801ed6c27b440a86ebd32/src/math.sol#L62
Expand Down

0 comments on commit 5555afc

Please sign in to comment.