Skip to content

Commit

Permalink
[MAINT] Drop 3.6 python support (automl#258)
Browse files Browse the repository at this point in the history
* Drop 3.6 python

* torch tensor fix

* Increase samples

* fix flake
  • Loading branch information
franchuterivera authored Jun 18, 2021
1 parent eda89f4 commit 0771dce
Show file tree
Hide file tree
Showing 9 changed files with 49 additions and 79 deletions.
4 changes: 2 additions & 2 deletions .github/workflows/pytest.yml
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.6, 3.7, 3.8]
python-version: [3.7, 3.8]
include:
- python-version: 3.8
code-cov: true
Expand Down Expand Up @@ -52,4 +52,4 @@ jobs:
uses: codecov/codecov-action@v1
with:
fail_ci_if_error: true
verbose: true
verbose: true
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

import numpy as np

import torch.tensor
import torch

from autoPyTorch.pipeline.components.preprocessing.image_preprocessing.normalise.base_normalizer import BaseNormalizer

Expand Down Expand Up @@ -30,16 +30,16 @@ def fit(self, X: Dict[str, Any], y: Optional[Any] = None) -> "ImageNormalizer":
self.std = X['dataset_properties']['std']
return self

def __call__(self, X: Union[np.ndarray, torch.tensor]) -> Union[np.ndarray, torch.tensor]:
def __call__(self, X: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
"""
Makes the autoPyTorchPreprocessingComponent Callable. Calling the component
calls the transform function of the underlying early_preprocessor and
returns the transformed array.
Args:
X (Union[np.ndarray, torch.tensor]): input data tensor
X (Union[np.ndarray, torch.Tensor]): input data tensor
Returns:
Union[np.ndarray, torch.tensor]: Transformed data tensor
Union[np.ndarray, torch.Tensor]: Transformed data tensor
"""
X = (X - self.mean) / self.std
return X
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

import numpy as np

import torch.tensor
import torch

from autoPyTorch.pipeline.components.preprocessing.image_preprocessing.normalise.base_normalizer import (
BaseNormalizer
Expand Down Expand Up @@ -34,16 +34,16 @@ def transform(self, X: Dict[str, Any]) -> Dict[str, Any]:
X.update({'normalise': self})
return X

def __call__(self, X: Union[np.ndarray, torch.tensor]) -> Union[np.ndarray, torch.tensor]:
def __call__(self, X: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
"""
Makes the autoPyTorchPreprocessingComponent Callable. Calling the component
calls the transform function of the underlying early_preprocessor and
returns the transformed array.
Args:
X (Union[np.ndarray, torch.tensor]): input data tensor
X (Union[np.ndarray, torch.Tensor]): input data tensor
Returns:
Union[np.ndarray, torch.tensor]: Transformed data tensor
Union[np.ndarray, torch.Tensor]: Transformed data tensor
"""
return X

Expand Down
12 changes: 10 additions & 2 deletions setup.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,10 @@
import setuptools
import sys
if sys.version_info < (3, 7):
raise ValueError(
'Unsupported Python version %d.%d.%d found. Auto-PyTorch requires Python '
'3.7 or higher.' % (sys.version_info.major, sys.version_info.minor, sys.version_info.micro)
)

with open("README.md", "r") as f:
long_description = f.read()
Expand Down Expand Up @@ -27,10 +33,12 @@
"Topic :: Utilities",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Programming Language :: Python :: 3",
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Programming Language :: Python :: 3.9',
"License :: OSI Approved :: BSD License",
],
python_requires='>=3',
python_requires='>=3.7',
platforms=['Linux'],
install_requires=requirements,
include_package_data=True,
Expand Down
4 changes: 2 additions & 2 deletions test/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
from autoPyTorch.utils.pipeline import get_dataset_requirements


N_SAMPLES = 200
N_SAMPLES = 300


@pytest.fixture(scope="session")
Expand Down Expand Up @@ -222,7 +222,7 @@ def get_tabular_data(task):
validator = TabularInputValidator(is_classification=True).fit(X.copy(), y.copy())

elif task == "regression_numerical_only":
X, y = make_regression(n_samples=N_SAMPLES,
X, y = make_regression(n_samples=3 * N_SAMPLES,
n_features=4,
n_informative=3,
n_targets=1,
Expand Down
76 changes: 21 additions & 55 deletions test/test_api/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
import os
import pathlib
import pickle
import sys
import unittest
from test.test_api.utils import dummy_do_dummy_prediction, dummy_eval_function, dummy_traditional_classification

Expand Down Expand Up @@ -63,17 +62,11 @@ def test_tabular_classification(openml_id, resampling_strategy, backend, resampl
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=42)

include = None
# for python less than 3.7, learned entity embedding
# is not able to be stored on disk (only on CI)
if sys.version_info < (3, 7):
include = {'network_embedding': ['NoEmbedding']}
# Search for a good configuration
estimator = TabularClassificationTask(
backend=backend,
resampling_strategy=resampling_strategy,
resampling_strategy_args=resampling_strategy_args,
include_components=include,
seed=42,
)

Expand Down Expand Up @@ -210,18 +203,14 @@ def test_tabular_classification(openml_id, resampling_strategy, backend, resampl
assert 'train_loss' in incumbent_results

# Check that we can pickle
# Test pickle
# This can happen on python greater than 3.6
# as older python do not control the state of the logger
if sys.version_info >= (3, 7):
dump_file = os.path.join(estimator._backend.temporary_directory, 'dump.pkl')
dump_file = os.path.join(estimator._backend.temporary_directory, 'dump.pkl')

with open(dump_file, 'wb') as f:
pickle.dump(estimator, f)
with open(dump_file, 'wb') as f:
pickle.dump(estimator, f)

with open(dump_file, 'rb') as f:
restored_estimator = pickle.load(f)
restored_estimator.predict(X_test)
with open(dump_file, 'rb') as f:
restored_estimator = pickle.load(f)
restored_estimator.predict(X_test)

# Test refit on dummy data
estimator.refit(dataset=backend.load_datamanager())
Expand Down Expand Up @@ -264,17 +253,11 @@ def test_tabular_regression(openml_name, resampling_strategy, backend, resamplin
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1)

include = None
# for python less than 3.7, learned entity embedding
# is not able to be stored on disk (only on CI)
if sys.version_info < (3, 7):
include = {'network_embedding': ['NoEmbedding']}
# Search for a good configuration
estimator = TabularRegressionTask(
backend=backend,
resampling_strategy=resampling_strategy,
resampling_strategy_args=resampling_strategy_args,
include_components=include,
seed=42,
)

Expand Down Expand Up @@ -403,30 +386,26 @@ def test_tabular_regression(openml_name, resampling_strategy, backend, resamplin
assert 'train_loss' in incumbent_results, estimator.run_history.data

# Check that we can pickle
# Test pickle
# This can happen on python greater than 3.6
# as older python do not control the state of the logger
if sys.version_info >= (3, 7):
dump_file = os.path.join(estimator._backend.temporary_directory, 'dump.pkl')
dump_file = os.path.join(estimator._backend.temporary_directory, 'dump.pkl')

with open(dump_file, 'wb') as f:
pickle.dump(estimator, f)
with open(dump_file, 'wb') as f:
pickle.dump(estimator, f)

with open(dump_file, 'rb') as f:
restored_estimator = pickle.load(f)
restored_estimator.predict(X_test)
with open(dump_file, 'rb') as f:
restored_estimator = pickle.load(f)
restored_estimator.predict(X_test)

# Test refit on dummy data
estimator.refit(dataset=backend.load_datamanager())
# Test refit on dummy data
estimator.refit(dataset=backend.load_datamanager())

# Make sure that a configuration space is stored in the estimator
assert isinstance(estimator.get_search_space(), CS.ConfigurationSpace)
# Make sure that a configuration space is stored in the estimator
assert isinstance(estimator.get_search_space(), CS.ConfigurationSpace)

representation = estimator.show_models()
assert isinstance(representation, str)
assert 'Weight' in representation
assert 'Preprocessing' in representation
assert 'Estimator' in representation
representation = estimator.show_models()
assert isinstance(representation, str)
assert 'Weight' in representation
assert 'Preprocessing' in representation
assert 'Estimator' in representation


@pytest.mark.parametrize('openml_id', (
Expand Down Expand Up @@ -536,16 +515,10 @@ def test_portfolio_selection(openml_id, backend, n_samples):
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1)

include = None
# for python less than 3.7, learned entity embedding
# is not able to be stored on disk (only on CI)
if sys.version_info < (3, 7):
include = {'network_embedding': ['NoEmbedding']}
# Search for a good configuration
estimator = TabularClassificationTask(
backend=backend,
resampling_strategy=HoldoutValTypes.holdout_validation,
include_components=include
)

with unittest.mock.patch.object(estimator, '_do_dummy_prediction', new=dummy_do_dummy_prediction):
Expand Down Expand Up @@ -584,16 +557,9 @@ def test_portfolio_selection_failure(openml_id, backend, n_samples):
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1)

include = None
# for python less than 3.7, learned entity embedding
# is not able to be stored on disk (only on CI)
if sys.version_info < (3, 7):
include = {'network_embedding': ['NoEmbedding']}
# Search for a good configuration
estimator = TabularClassificationTask(
backend=backend,
resampling_strategy=HoldoutValTypes.holdout_validation,
include_components=include
)
with pytest.raises(FileNotFoundError, match=r"The path: .+? provided for 'portfolio_selection' "
r"for the file containing the portfolio configurations "
Expand Down
2 changes: 0 additions & 2 deletions test/test_ensemble/test_ensemble.py
Original file line number Diff line number Diff line change
Expand Up @@ -690,8 +690,6 @@ def test_ensemble_builder_process_realrun(dask_client, ensemble_backend):

@flaky(max_runs=3)
@unittest.mock.patch('autoPyTorch.ensemble.ensemble_builder.EnsembleBuilder.fit_ensemble')
@pytest.mark.skipif(sys.version_info >= (3, 7),
reason="Causes out-of-memory Errors in CI")
def test_ensemble_builder_nbest_remembered(fit_ensemble, ensemble_backend, dask_client):
"""
Makes sure ensemble builder returns the size of the ensemble that pynisher allowed
Expand Down
1 change: 0 additions & 1 deletion test/test_evaluation/test_evaluation.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,7 +356,6 @@ def test_exception_in_target_function(self, eval_holdout_mock):
self.assertIn('traceback', info[1].additional_info)
self.assertNotIn('exitcode', info[1].additional_info)

@unittest.skipIf(sys.version_info < (3, 7), reason="requires python3.7 or higher")
def test_silent_exception_in_target_function(self):
config = unittest.mock.Mock(spec=int)
config.config_id = 198
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -126,12 +126,11 @@ def test_model_fit_predict_score(traditional_learner, fit_dictionary_tabular):
fit_dictionary_tabular['y_train'][fit_dictionary_tabular['val_indices']])
assert np.allclose(score, model.fit_output['val_score'], atol=1e-6)

if sys.version_info >= (3, 7):
dump_file = os.path.join(fit_dictionary_tabular['backend'].temporary_directory, 'dump.pkl')
dump_file = os.path.join(fit_dictionary_tabular['backend'].temporary_directory, 'dump.pkl')

with open(dump_file, 'wb') as f:
pickle.dump(model, f)
with open(dump_file, 'wb') as f:
pickle.dump(model, f)

with open(dump_file, 'rb') as f:
restored_estimator = pickle.load(f)
restored_estimator.predict(fit_dictionary_tabular['X_train'])
with open(dump_file, 'rb') as f:
restored_estimator = pickle.load(f)
restored_estimator.predict(fit_dictionary_tabular['X_train'])

0 comments on commit 0771dce

Please sign in to comment.