Skip to content

Commit

Permalink
[fix] Dropout bug fix (automl#247)
Browse files Browse the repository at this point in the history
* fix dropout bug

* fix dropout shape discrepancy

* Fix unit test bug

* Add tests for dropout shape asper comments from fransisco

* Fix flake
  • Loading branch information
ravinkohli authored Jun 10, 2021
1 parent 9a847e2 commit 1818445
Show file tree
Hide file tree
Showing 3 changed files with 70 additions and 8 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def build_backbone(self, input_shape: Tuple[int, ...]) -> None:
out_features=self.config["num_units_%d" % i],
blocks_per_group=self.config["blocks_per_group_%d" % i],
last_block_index=(i - 1) * self.config["blocks_per_group_%d" % i],
dropout=self.config['use_dropout']
dropout=self.config[f'dropout_{i}'] if self.config['use_dropout'] else None,
)
)

Expand All @@ -52,7 +52,7 @@ def build_backbone(self, input_shape: Tuple[int, ...]) -> None:
return backbone

def _add_group(self, in_features: int, out_features: int,
blocks_per_group: int, last_block_index: int, dropout: bool
blocks_per_group: int, last_block_index: int, dropout: Optional[float]
) -> nn.Module:
"""
Adds a group into the main backbone.
Expand Down Expand Up @@ -206,7 +206,7 @@ def __init__(
out_features: int,
blocks_per_group: int,
block_index: int,
dropout: bool,
dropout: Optional[float],
activation: nn.Module
):
super(ResBlock, self).__init__()
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,10 +38,14 @@ def build_backbone(self, input_shape: Tuple[int, ...]) -> None:
self.config.update(
{"num_units_%d" % (i): num for i, num in enumerate(neuron_counts)}
)
if self.config['use_dropout'] and self.config["max_dropout"] > 0.05:
# we are skipping the last layer, as the function get_shaped_neuron_counts
# is built for getting neuron counts, so it will add the out_features to
# the last layer. However, in dropout we dont want to have that, we just
# want to use the shape and not worry about the output.
if self.config['use_dropout']:
dropout_shape = get_shaped_neuron_counts(
self.config['resnet_shape'], 0, 0, 1000, self.config['num_groups']
)
self.config['resnet_shape'], 0, 0, 1000, self.config['num_groups'] + 1
)[:-1]

dropout_shape = [
dropout / 1000 * self.config["max_dropout"] for dropout in dropout_shape
Expand All @@ -61,7 +65,7 @@ def build_backbone(self, input_shape: Tuple[int, ...]) -> None:
out_features=self.config["num_units_%d" % i],
blocks_per_group=self.config["blocks_per_group"],
last_block_index=(i - 1) * self.config["blocks_per_group"],
dropout=self.config['use_dropout']
dropout=self.config[f'dropout_{i}'] if self.config['use_dropout'] else None
)
)

Expand Down
60 changes: 59 additions & 1 deletion test/test_pipeline/components/setup/test_setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,10 @@
SchedulerChoice
)
from autoPyTorch.pipeline.components.setup.network_backbone import NetworkBackboneChoice
from autoPyTorch.pipeline.components.setup.network_backbone.ResNetBackbone import ResBlock
from autoPyTorch.pipeline.components.setup.network_backbone.ShapedResNetBackbone import ShapedResNetBackbone
from autoPyTorch.pipeline.components.setup.network_backbone.base_network_backbone import NetworkBackboneComponent
from autoPyTorch.pipeline.components.setup.network_backbone.utils import get_shaped_neuron_counts
from autoPyTorch.pipeline.components.setup.network_head import NetworkHeadChoice
from autoPyTorch.pipeline.components.setup.network_head.base_network_head import NetworkHeadComponent
from autoPyTorch.pipeline.components.setup.network_initializer import (
Expand All @@ -33,7 +36,10 @@
BaseOptimizerComponent,
OptimizerChoice
)
from autoPyTorch.utils.hyperparameter_search_space_update import HyperparameterSearchSpaceUpdates
from autoPyTorch.utils.hyperparameter_search_space_update import (
HyperparameterSearchSpace,
HyperparameterSearchSpaceUpdates
)


class DummyLR(BaseLRComponent):
Expand Down Expand Up @@ -417,6 +423,58 @@ def test_add_network_backbone(self):
# clear addons
base_network_backbone_choice._addons = ThirdPartyComponents(NetworkBackboneComponent)

@pytest.mark.parametrize('resnet_shape', ['funnel', 'long_funnel',
'diamond', 'hexagon',
'brick', 'triangle',
'stairs'])
def test_dropout(self, resnet_shape):
# ensures that dropout is assigned to the resblock as expected
dataset_properties = {"task_type": constants.TASK_TYPES_TO_STRING[1]}
max_dropout = 0.5
num_groups = 4
config_space = ShapedResNetBackbone.get_hyperparameter_search_space(dataset_properties=dataset_properties,
use_dropout=HyperparameterSearchSpace(
hyperparameter='use_dropout',
value_range=[True],
default_value=True),
max_dropout=HyperparameterSearchSpace(
hyperparameter='max_dropout',
value_range=[max_dropout],
default_value=max_dropout),
resnet_shape=HyperparameterSearchSpace(
hyperparameter='resnet_shape',
value_range=[resnet_shape],
default_value=resnet_shape),
num_groups=HyperparameterSearchSpace(
hyperparameter='num_groups',
value_range=[num_groups],
default_value=num_groups),
blocks_per_group=HyperparameterSearchSpace(
hyperparameter='blocks_per_group',
value_range=[1],
default_value=1
)
)

config = config_space.sample_configuration().get_dictionary()
resnet_backbone = ShapedResNetBackbone(**config)
resnet_backbone.build_backbone((100, 5))
dropout_probabilites = [resnet_backbone.config[key] for key in resnet_backbone.config if 'dropout_' in key]
dropout_shape = get_shaped_neuron_counts(
resnet_shape, 0, 0, 1000, num_groups + 1
)[:-1]

dropout_shape = [
dropout / 1000 * max_dropout for dropout in dropout_shape
]
blocks_dropout = []
for block in resnet_backbone.backbone:
if isinstance(block, torch.nn.Sequential):
for inner_block in block:
if isinstance(inner_block, ResBlock):
blocks_dropout.append(inner_block.dropout)
assert dropout_probabilites == dropout_shape == blocks_dropout


class TestNetworkHead:
def test_all_heads_available(self):
Expand Down

0 comments on commit 1818445

Please sign in to comment.