Skip to content

Commit

Permalink
change config_id to config_id+1 (automl#129)
Browse files Browse the repository at this point in the history
  • Loading branch information
ravinkohli authored Mar 10, 2021
1 parent a3d40ac commit b5d1c8b
Showing 1 changed file with 26 additions and 20 deletions.
46 changes: 26 additions & 20 deletions test/test_api/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,33 +105,33 @@ def test_tabular_classification(openml_id, resampling_strategy, backend):
# Search for an existing run key in disc. A individual model might have
# a timeout and hence was not written to disc
for i, (run_key, value) in enumerate(estimator.run_history.data.items()):
if i == 0:
# Ignore dummy run
continue
if 'SUCCESS' not in str(value.status):
continue

run_key_model_run_dir = estimator._backend.get_numrun_directory(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, run_key.config_id + 1, run_key.budget)
if os.path.exists(run_key_model_run_dir):
# Runkey config id is different from the num_run
# more specifically num_run = config_id + 1(dummy)
successful_num_run = run_key.config_id + 1
break

if resampling_strategy == HoldoutValTypes.holdout_validation:
model_file = os.path.join(run_key_model_run_dir,
f"{estimator.seed}.{run_key.config_id}.{run_key.budget}.model")
f"{estimator.seed}.{successful_num_run}.{run_key.budget}.model")
assert os.path.exists(model_file), model_file
model = estimator._backend.load_model_by_seed_and_id_and_budget(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, successful_num_run, run_key.budget)
assert isinstance(model.named_steps['network'].get_network(), torch.nn.Module)
elif resampling_strategy == CrossValTypes.k_fold_cross_validation:
model_file = os.path.join(
run_key_model_run_dir,
f"{estimator.seed}.{run_key.config_id}.{run_key.budget}.cv_model"
f"{estimator.seed}.{successful_num_run}.{run_key.budget}.cv_model"
)
assert os.path.exists(model_file), model_file

model = estimator._backend.load_cv_model_by_seed_and_id_and_budget(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, successful_num_run, run_key.budget)
assert isinstance(model, VotingClassifier)
assert len(model.estimators_) == 3
assert isinstance(model.estimators_[0].named_steps['network'].get_network(),
Expand All @@ -142,7 +142,7 @@ def test_tabular_classification(openml_id, resampling_strategy, backend):
# Make sure that predictions on the test data are printed and make sense
test_prediction = os.path.join(run_key_model_run_dir,
estimator._backend.get_prediction_filename(
'test', estimator.seed, run_key.config_id,
'test', estimator.seed, successful_num_run,
run_key.budget))
assert os.path.exists(test_prediction), test_prediction
assert np.shape(np.load(test_prediction, allow_pickle=True))[0] == np.shape(X_test)[0]
Expand All @@ -152,7 +152,7 @@ def test_tabular_classification(openml_id, resampling_strategy, backend):
ensemble_prediction = os.path.join(run_key_model_run_dir,
estimator._backend.get_prediction_filename(
'ensemble',
estimator.seed, run_key.config_id,
estimator.seed, successful_num_run,
run_key.budget))
assert os.path.exists(ensemble_prediction), ensemble_prediction
assert np.shape(np.load(ensemble_prediction, allow_pickle=True))[0] == np.shape(
Expand Down Expand Up @@ -213,10 +213,16 @@ def test_tabular_regression(openml_name, resampling_strategy, backend):
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1)

include = None
# for python less than 3.7, learned entity embedding
# is not able to be stored on disk (only on CI)
if sys.version_info < (3, 7):
include = {'network_embedding': ['NoEmbedding']}
# Search for a good configuration
estimator = TabularRegressionTask(
backend=backend,
resampling_strategy=resampling_strategy,
include_components=include
)

estimator.search(
Expand Down Expand Up @@ -267,32 +273,32 @@ def test_tabular_regression(openml_name, resampling_strategy, backend):
# Search for an existing run key in disc. A individual model might have
# a timeout and hence was not written to disc
for i, (run_key, value) in enumerate(estimator.run_history.data.items()):
if i == 0:
# Ignore dummy run
continue
if 'SUCCESS' not in str(value.status):
continue

run_key_model_run_dir = estimator._backend.get_numrun_directory(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, run_key.config_id + 1, run_key.budget)
if os.path.exists(run_key_model_run_dir):
# Runkey config id is different from the num_run
# more specifically num_run = config_id + 1(dummy)
successful_num_run = run_key.config_id + 1
break

if resampling_strategy == HoldoutValTypes.holdout_validation:
model_file = os.path.join(run_key_model_run_dir,
f"{estimator.seed}.{run_key.config_id}.{run_key.budget}.model")
f"{estimator.seed}.{successful_num_run}.{run_key.budget}.model")
assert os.path.exists(model_file), model_file
model = estimator._backend.load_model_by_seed_and_id_and_budget(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, successful_num_run, run_key.budget)
assert isinstance(model.named_steps['network'].get_network(), torch.nn.Module)
elif resampling_strategy == CrossValTypes.k_fold_cross_validation:
model_file = os.path.join(
run_key_model_run_dir,
f"{estimator.seed}.{run_key.config_id}.{run_key.budget}.cv_model"
f"{estimator.seed}.{successful_num_run}.{run_key.budget}.cv_model"
)
assert os.path.exists(model_file), model_file
model = estimator._backend.load_cv_model_by_seed_and_id_and_budget(
estimator.seed, run_key.config_id, run_key.budget)
estimator.seed, successful_num_run, run_key.budget)
assert isinstance(model, VotingRegressor)
assert len(model.estimators_) == 3
assert isinstance(model.estimators_[0].named_steps['network'].get_network(),
Expand All @@ -303,7 +309,7 @@ def test_tabular_regression(openml_name, resampling_strategy, backend):
# Make sure that predictions on the test data are printed and make sense
test_prediction = os.path.join(run_key_model_run_dir,
estimator._backend.get_prediction_filename(
'test', estimator.seed, run_key.config_id,
'test', estimator.seed, successful_num_run,
run_key.budget))
assert os.path.exists(test_prediction), test_prediction
assert np.shape(np.load(test_prediction, allow_pickle=True))[0] == np.shape(X_test)[0]
Expand All @@ -313,7 +319,7 @@ def test_tabular_regression(openml_name, resampling_strategy, backend):
ensemble_prediction = os.path.join(run_key_model_run_dir,
estimator._backend.get_prediction_filename(
'ensemble',
estimator.seed, run_key.config_id,
estimator.seed, successful_num_run,
run_key.budget))
assert os.path.exists(ensemble_prediction), ensemble_prediction
assert np.shape(np.load(ensemble_prediction, allow_pickle=True))[0] == np.shape(
Expand Down

0 comments on commit b5d1c8b

Please sign in to comment.