Skip to content

Exploratory Data Analysis and Predictive Modeling for Airbnb London listings

Notifications You must be signed in to change notification settings

depshad/insideAirbnb-London

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 

Repository files navigation

Inside Airbnb-London

Exploratory Data Analysis and Predictive Modeling for Airbnb London listings

Data can be downloaded from http://data.insideairbnb.com/united-kingdom/england/london/2019-07-10/data/listings.csv.gz

Exploratory Data Analysis

Feature Selection

1.Remove features with more than 90% values missing

2.Remove features with constant value for all data points

3.Remove empty features

Feature Engineering

1.Convert boolean features to numerical

2.Convert currency based features to numerical from string type

3.Extract features out of free form text(House Rules)

4.Create feature:host_duration using last_scraped and host_since information

5.Convert various categorical features to numerical

6.Create 'distance to center' feature: distance between London's center to listings

7.Create 'amenities_count' from amenities

8.Feature imputation using the mean,median values

Vizualization

1.Plot log tranformed price feature

2.Effect of bedrooms and accommodates on price

3.Vizualize various numerical features using boxplot

Modeling

The dependent variable is listing price

1.Random Forest regreesor with n_estimators tuned using GridSearch

2.Feature importance plot

Future Work

1.Instead of euclidean distance use a specilaized distance (vincenty, Haversine)

2.Use zipcode,neighbourhood feature to cluster listings

3.Try different imputation strategies and observe the effect on model's prediction error

4.Tune other hyperparameters of RandomForest model

5.Use different regression models and compare the performance

6.Calculate prediction intervals

7.Create an ensemble of regression models

About

Exploratory Data Analysis and Predictive Modeling for Airbnb London listings

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published