Skip to content

diogocamacho/diffnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DiffNet: Analyzing topological differences of networks

DiffNet is an R package that is aimed at identifying differences in network topology. The algorithm takes as input omics data corresponding to two different conditions, infers a network of interactions between all variables in the data set, and then computes the difference in (inferred) network topology between the two conditions.

Installation

The easiest way to install the DiffNet package is using the devtools package:

library(devtools)
devtools::install_github("diogocamacho/diffnet")

Example

Using the example data set provided with the library, we will show how to run the algorithm. First, we'll start by loading the library:

library(diffnet)

Next, let's select a random set of samples to classify as Group 1 and a second set as Group 2. We have 120 samples in the data set, so each group will have exactly 60 samples:

set.seed(1234)
g1 <- sample(x = seq_along(1:120), size = 60, replace = FALSE)
g2 <- setdiff(seq_along(1:120), g1)

With the groups defined, we can now run the algorithm. We will run it using the default parameter for correlation type (Spearman) and correlation threshold (0.75):

D <- diff_top(data = dataset$expression_data, group1 = g1, group2 = g2)

Running this will generate a tibble with 27,409 rows, where each row corresponds to an edge in the network and the corresponding difference score. Using the gene annotations provided with the example data:

D %>% 
  dplyr::mutate(x = dataset$gene_annotations$symbol[x]) %>% 
  dplyr::mutate(y = dataset$gene_annotations$symbol[y]) %>% 
  dplyr::select(., x, y, change_type, total_score)

About

DiffNet: Differential Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages