Skip to content

Commit

Permalink
Merge pull request #11 from dmadison/development
Browse files Browse the repository at this point in the history
Separated Adalight Functions
  • Loading branch information
dmadison authored May 5, 2017
2 parents 1ec552e + 9bde209 commit 393a4ac
Show file tree
Hide file tree
Showing 2 changed files with 151 additions and 118 deletions.
255 changes: 138 additions & 117 deletions Arduino/LEDstream_FastLED/LEDstream_FastLED.ino
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
* library (http://fastled.io) for driving led strips.
*
* http://github.com/dmadison/Adalight-FastLED
* Last Updated: 2017-04-23
* Last Updated: 2017-05-05
*/

// --- General Settings
Expand All @@ -19,16 +19,18 @@ static const uint8_t

// --- Serial Settings
static const unsigned long
SerialSpeed = 115200, // serial port speed, max available
SerialTimeout = 150000; // time before LEDs are shut off, if no data
// (150 seconds)
SerialSpeed = 115200; // serial port speed, max available
static const uint16_t
SerialTimeout = 150; // time before LEDs are shut off if no data (in seconds)

// --- Optional Settings (uncomment to add)
//#define CLEAR_ON_START // LEDs are cleared on reset
//#define GROUND_PIN 10 // additional grounding pin (optional)
//#define CALIBRATE // sets all LEDs to the color of the first
//#define DEBUG_LED 13 // turns on the Arduino's built-in LED
// if the magic word + checksum match

// --- Debug Settings (uncomment to add)
//#define DEBUG_LED 13 // toggles the Arduino's built-in LED on header match
//#define DEBUG_FPS 8 // enables a pulse on LED latch

// --------------------------------------------------------------------

Expand Down Expand Up @@ -63,6 +65,35 @@ static const uint8_t magic[] = {
#define MODE_HEADER 0
#define MODE_DATA 1

static uint8_t
mode = MODE_HEADER;
static int16_t
c;
static uint16_t
outPos;
static uint32_t
bytesRemaining;
static unsigned long
t,
lastByteTime,
lastAckTime;

// Debug macros initialized
#ifdef DEBUG_LED
#define ON 1
#define OFF 0

#define D_LED(x) do {digitalWrite(DEBUG_LED, x);} while(0)
#else
#define D_LED(x)
#endif

#ifdef DEBUG_FPS
#define D_FPS do {digitalWrite(DEBUG_FPS, HIGH); digitalWrite(DEBUG_FPS, LOW);} while (0)
#else
#define D_FPS
#endif

void setup(){
#ifdef GROUND_PIN
pinMode(GROUND_PIN, OUTPUT);
Expand All @@ -74,6 +105,10 @@ void setup(){
digitalWrite(DEBUG_LED, LOW);
#endif

#ifdef DEBUG_FPS
pinMode(DEBUG_FPS, OUTPUT);
#endif

FastLED.addLeds<LED_TYPE, Led_Pin, COLOR_ORDER>(leds, Num_Leds);
FastLED.setBrightness(Brightness);

Expand All @@ -82,130 +117,116 @@ void setup(){
#endif

Serial.begin(SerialSpeed);
Serial.print("Ada\n"); // Send ACK string to host

lastByteTime = lastAckTime = millis(); // Set initial counters
}

void loop(){
adalight();
}

void adalight(){
static uint8_t
mode = MODE_HEADER;
static uint8_t
headPos,
hi, lo, chk;
int16_t
c;
static uint16_t
outPos;
static uint32_t
bytesRemaining;
unsigned long
t;
static unsigned long
lastByteTime,
lastAckTime;
t = millis(); // Save current time

Serial.print("Ada\n"); // Send ACK string to host
// If there is new serial data
if((c = Serial.read()) >= 0){
lastByteTime = lastAckTime = t; // Reset timeout counters

lastByteTime = lastAckTime = millis();

// loop() is avoided as even that small bit of function overhead
// has a measurable impact on this code's overall throughput.

for(;;) {

// Implementation is a simple finite-state machine.
// Regardless of mode, check for serial input each time:
t = millis();

if((c = Serial.read()) >= 0){
lastByteTime = lastAckTime = t; // Reset timeout counters

switch(mode) {

switch(mode) {
case MODE_HEADER:

if(headPos < MAGICSIZE){
if(c == magic[headPos]) headPos++;
else headPos = 0;
}
else{
switch(headPos){
case HICHECK:
hi = c;
headPos++;
break;
case LOCHECK:
lo = c;
headPos++;
break;
case CHECKSUM:
chk = c;
if(chk == (hi ^ lo ^ 0x55)) {
// Checksum looks valid. Get 16-bit LED count, add 1
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
#ifdef DEBUG_LED
digitalWrite(DEBUG_LED, HIGH);
#endif

bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
outPos = 0;
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
mode = MODE_DATA; // Proceed to latch wait mode
}
headPos = 0; // Reset header position regardless of checksum result
break;
}
}
headerMode();
break;

case MODE_DATA:
dataMode();
break;
}
}
else {
// No new data
timeouts();
}
}

if(bytesRemaining > 0) {
if (outPos < sizeof(leds)){
#ifdef CALIBRATE
if(outPos < 3)
ledsRaw[outPos++] = c;
else{
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
outPos++;
}
#else
ledsRaw[outPos++] = c; // Issue next byte
#endif
}
bytesRemaining--;
}
if(bytesRemaining == 0) {
// End of data -- issue latch:
mode = MODE_HEADER; // Begin next header search
FastLED.show();

#ifdef DEBUG_LED
digitalWrite(DEBUG_LED, LOW);
#endif
void headerMode(){
static uint8_t
headPos,
hi, lo, chk;

if(headPos < MAGICSIZE){
// Check if magic word matches
if(c == magic[headPos]) {headPos++;}
else {headPos = 0;}
}
else{
// Magic word matches! Now verify checksum
switch(headPos){
case HICHECK:
hi = c;
headPos++;
break;
case LOCHECK:
lo = c;
headPos++;
break;
case CHECKSUM:
chk = c;
if(chk == (hi ^ lo ^ 0x55)) {
// Checksum looks valid. Get 16-bit LED count, add 1
// (# LEDs is always > 0) and multiply by 3 for R,G,B.
D_LED(ON);
bytesRemaining = 3L * (256L * (long)hi + (long)lo + 1L);
outPos = 0;
memset(leds, 0, Num_Leds * sizeof(struct CRGB));
mode = MODE_DATA; // Proceed to latch wait mode
}
headPos = 0; // Reset header position regardless of checksum result
break;
} // end switch
} // end serial if
else {
// No data received. If this persists, send an ACK packet
// to host once every second to alert it to our presence.
if((t - lastAckTime) > 1000) {
Serial.print("Ada\n"); // Send ACK string to host
lastAckTime = t; // Reset counter
}
// If no data received for an extended time, turn off all LEDs.
if((t - lastByteTime) > SerialTimeout) {
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
FastLED.show();
lastByteTime = t; // Reset counter
}
} // end else
} // end for(;;)
}
}
}

void dataMode(){
// If LED data is not full
if (outPos < sizeof(leds)){
dataSet();
}
bytesRemaining--;

if(bytesRemaining == 0) {
// End of data -- issue latch:
mode = MODE_HEADER; // Begin next header search
FastLED.show();
D_FPS;
D_LED(OFF);
}
}

void dataSet(){
#ifdef CALIBRATE
if(outPos < 3)
ledsRaw[outPos++] = c;
else{
ledsRaw[outPos] = ledsRaw[outPos%3]; // Sets RGB data to first LED color
outPos++;
}
#else
ledsRaw[outPos++] = c; // Issue next byte
#endif
}

void loop()
{
// loop() is avoided as even that small bit of function overhead
// has a measurable impact on this code's overall throughput.
void timeouts(){
// No data received. If this persists, send an ACK packet
// to host once every second to alert it to our presence.
if((t - lastAckTime) > 1000) {
Serial.print("Ada\n"); // Send ACK string to host
lastAckTime = t; // Reset counter

// If no data received for an extended time, turn off all LEDs.
if((t - lastByteTime) > SerialTimeout * 1000) {
memset(leds, 0, Num_Leds * sizeof(struct CRGB)); //filling Led array by zeroes
FastLED.show();
lastByteTime = t; // Reset counter
}
}
}
14 changes: 13 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,19 @@ Additional settings allow for adjusting:

There are also optional settings to clear the LEDs on reset, configure a dedicated ground pin, and to put the Arduino into a "calibration" mode, where all LED colors match the first LED.

Upload to your Arduino and use a corresponding PC application to stream color data. You can get the Processing files from the [main Adalight repository](https://github.com/adafruit/Adalight), though I would recommend using [Patrick Siegler's](https://github.com/psieg/) fork of Lightpacks's Prismatik, which you can find [here](https://github.com/psieg/Lightpack).
Upload to your Arduino and use a corresponding PC application to stream color data. You can get the Processing files from the [main Adalight repository](https://github.com/adafruit/Adalight), though I would recommend using [Patrick Siegler's](https://github.com/psieg/) fork of Lightpacks's Prismatik, which you can find [here](https://github.com/psieg/Lightpack/releases).

## Debug Settings

The code includes two debugging options:
- DEBUG_LED
- DEBUG_FPS

`DEBUG_LED` will turn on the Arduino's built-in LED on a successful header match, and off when the LEDs latch. If your LEDs aren't working, this will help confirm that the Arduino is receiving properly formatted serial data.

`DEBUG_FPS`, similarly, will toggle a given pin when the LEDs latch. This is useful for measuring framerate with external hardware, like a logic analyzer.

To enable either of these settings, uncomment their respective '#define' lines.

## Issues and LED-types

Expand Down

0 comments on commit 393a4ac

Please sign in to comment.