Skip to content

Commit

Permalink
[TREE] add interaction constraints (#3466)
Browse files Browse the repository at this point in the history
* add interaction constraints

* enable both interaction and monotonic constraints at the same time

* fix lint

* add R test, fix lint, update demo

* Use dmlc::JSONReader to express interaction constraints as nested lists; Use sparse arrays for bookkeeping

* Add Python test for interaction constraints

* make R interaction constraints parameter based on feature index instead of column names, fix R coding style

* Fix lint

* Add BlueTea88 to CONTRIBUTORS.md

* Short circuit when no constraint is specified; address review comments

* Add tutorial for feature interaction constraints

* allow interaction constraints to be passed as string, remove redundant column_names argument

* Fix typo

* Address review comments

* Add comments to Python test
  • Loading branch information
BlueTea88 authored and hcho3 committed Sep 4, 2018
1 parent dee0b69 commit 9254c58
Show file tree
Hide file tree
Showing 12 changed files with 581 additions and 3 deletions.
2 changes: 2 additions & 0 deletions CONTRIBUTORS.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,3 +78,5 @@ List of Contributors
* [Pierre de Sahb](https://github.com/pdesahb)
* [liuliang01](https://github.com/liuliang01)
- liuliang01 added support for the qid column for LibSVM input format. This makes ranking task easier in distributed setting.
* [Andrew Thia](https://github.com/BlueTea88)
- Andrew Thia implemented feature interaction constraints
13 changes: 13 additions & 0 deletions R-package/R/utils.R
Original file line number Diff line number Diff line change
Expand Up @@ -74,6 +74,19 @@ check.booster.params <- function(params, ...) {
params[['monotone_constraints']] = vec2str
}

# interaction constraints parser (convert from list of column indices to string)
if (!is.null(params[['interaction_constraints']]) &&
typeof(params[['interaction_constraints']]) != "character"){
# check input class
if (class(params[['interaction_constraints']]) != 'list') stop('interaction_constraints should be class list')
if (!all(unique(sapply(params[['interaction_constraints']], class)) %in% c('numeric','integer'))) {
stop('interaction_constraints should be a list of numeric/integer vectors')
}

# recast parameter as string
interaction_constraints <- sapply(params[['interaction_constraints']], function(x) paste0('[', paste(x, collapse=','), ']'))
params[['interaction_constraints']] <- paste0('[', paste(interaction_constraints, collapse=','), ']')
}
return(params)
}

Expand Down
1 change: 1 addition & 0 deletions R-package/R/xgb.train.R
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
#' \item \code{colsample_bytree} subsample ratio of columns when constructing each tree. Default: 1
#' \item \code{num_parallel_tree} Experimental parameter. number of trees to grow per round. Useful to test Random Forest through Xgboost (set \code{colsample_bytree < 1}, \code{subsample < 1} and \code{round = 1}) accordingly. Default: 1
#' \item \code{monotone_constraints} A numerical vector consists of \code{1}, \code{0} and \code{-1} with its length equals to the number of features in the training data. \code{1} is increasing, \code{-1} is decreasing and \code{0} is no constraint.
#' \item \code{interaction_constraints} A list of vectors specifying feature indices of permitted interactions. Each item of the list represents one permitted interaction where specified features are allowed to interact with each other. Feature index values should start from \code{0} (\code{0} references the first column). Leave argument unspecified for no interaction constraints.
#' }
#'
#' 2.2. Parameter for Linear Booster
Expand Down
105 changes: 105 additions & 0 deletions R-package/demo/interaction_constraints.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
library(xgboost)
library(data.table)

set.seed(1024)

# Function to obtain a list of interactions fitted in trees, requires input of maximum depth
treeInteractions <- function(input_tree, input_max_depth){
trees <- copy(input_tree) # copy tree input to prevent overwriting
if (input_max_depth < 2) return(list()) # no interactions if max depth < 2
if (nrow(input_tree) == 1) return(list())

# Attach parent nodes
for (i in 2:input_max_depth){
if (i == 2) trees[, ID_merge:=ID] else trees[, ID_merge:=get(paste0('parent_',i-2))]
parents_left <- trees[!is.na(Split), list(i.id=ID, i.feature=Feature, ID_merge=Yes)]
parents_right <- trees[!is.na(Split), list(i.id=ID, i.feature=Feature, ID_merge=No)]

setorderv(trees, 'ID_merge')
setorderv(parents_left, 'ID_merge')
setorderv(parents_right, 'ID_merge')

trees <- merge(trees, parents_left, by='ID_merge', all.x=T)
trees[!is.na(i.id), c(paste0('parent_', i-1), paste0('parent_feat_', i-1)):=list(i.id, i.feature)]
trees[, c('i.id','i.feature'):=NULL]

trees <- merge(trees, parents_right, by='ID_merge', all.x=T)
trees[!is.na(i.id), c(paste0('parent_', i-1), paste0('parent_feat_', i-1)):=list(i.id, i.feature)]
trees[, c('i.id','i.feature'):=NULL]
}

# Extract nodes with interactions
interaction_trees <- trees[!is.na(Split) & !is.na(parent_1),
c('Feature',paste0('parent_feat_',1:(input_max_depth-1))), with=F]
interaction_trees_split <- split(interaction_trees, 1:nrow(interaction_trees))
interaction_list <- lapply(interaction_trees_split, as.character)

# Remove NAs (no parent interaction)
interaction_list <- lapply(interaction_list, function(x) x[!is.na(x)])

# Remove non-interactions (same variable)
interaction_list <- lapply(interaction_list, unique) # remove same variables
interaction_length <- sapply(interaction_list, length)
interaction_list <- interaction_list[interaction_length > 1]
interaction_list <- unique(lapply(interaction_list, sort))
return(interaction_list)
}

# Generate sample data
x <- list()
for (i in 1:10){
x[[i]] = i*rnorm(1000, 10)
}
x <- as.data.table(x)

y = -1*x[, rowSums(.SD)] + x[['V1']]*x[['V2']] + x[['V3']]*x[['V4']]*x[['V5']] + rnorm(1000, 0.001) + 3*sin(x[['V7']])

train = as.matrix(x)

# Interaction constraint list (column names form)
interaction_list <- list(c('V1','V2'),c('V3','V4','V5'))

# Convert interaction constraint list into feature index form
cols2ids <- function(object, col_names) {
LUT <- seq_along(col_names) - 1
names(LUT) <- col_names
rapply(object, function(x) LUT[x], classes="character", how="replace")
}
interaction_list_fid = cols2ids(interaction_list, colnames(train))

# Fit model with interaction constraints
bst = xgboost(data = train, label = y, max_depth = 4,
eta = 0.1, nthread = 2, nrounds = 1000,
interaction_constraints = interaction_list_fid)

bst_tree <- xgb.model.dt.tree(colnames(train), bst)
bst_interactions <- treeInteractions(bst_tree, 4) # interactions constrained to combinations of V1*V2 and V3*V4*V5

# Fit model without interaction constraints
bst2 = xgboost(data = train, label = y, max_depth = 4,
eta = 0.1, nthread = 2, nrounds = 1000)

bst2_tree <- xgb.model.dt.tree(colnames(train), bst2)
bst2_interactions <- treeInteractions(bst2_tree, 4) # much more interactions

# Fit model with both interaction and monotonicity constraints
bst3 = xgboost(data = train, label = y, max_depth = 4,
eta = 0.1, nthread = 2, nrounds = 1000,
interaction_constraints = interaction_list_fid,
monotone_constraints = c(-1,0,0,0,0,0,0,0,0,0))

bst3_tree <- xgb.model.dt.tree(colnames(train), bst3)
bst3_interactions <- treeInteractions(bst3_tree, 4) # interactions still constrained to combinations of V1*V2 and V3*V4*V5

# Show monotonic constraints still apply by checking scores after incrementing V1
x1 <- sort(unique(x[['V1']]))
for (i in 1:length(x1)){
testdata <- copy(x[, -c('V1')])
testdata[['V1']] <- x1[i]
testdata <- testdata[, paste0('V',1:10), with=F]
pred <- predict(bst3, as.matrix(testdata))

# Should not print out anything due to monotonic constraints
if (i > 1) if (any(pred > prev_pred)) print(i)
prev_pred <- pred
}
38 changes: 38 additions & 0 deletions R-package/tests/testthat/test_interaction_constraints.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
require(xgboost)

context("interaction constraints")

set.seed(1024)
x1 <- rnorm(1000, 1)
x2 <- rnorm(1000, 1)
x3 <- sample(c(1,2,3), size=1000, replace=TRUE)
y <- x1 + x2 + x3 + x1*x2*x3 + rnorm(1000, 0.001) + 3*sin(x1)
train <- matrix(c(x1,x2,x3), ncol = 3)

test_that("interaction constraints for regression", {
# Fit a model that only allows interaction between x1 and x2
bst <- xgboost(data = train, label = y, max_depth = 3,
eta = 0.1, nthread = 2, nrounds = 100, verbose = 0,
interaction_constraints = list(c(0,1)))

# Set all observations to have the same x3 values then increment
# by the same amount
preds <- lapply(c(1,2,3), function(x){
tmat <- matrix(c(x1,x2,rep(x,1000)), ncol=3)
return(predict(bst, tmat))
})

# Check incrementing x3 has the same effect on all observations
# since x3 is constrained to be independent of x1 and x2
# and all observations start off from the same x3 value
diff1 <- preds[[2]] - preds[[1]]
test1 <- all(abs(diff1 - diff1[1]) < 1e-4)

diff2 <- preds[[3]] - preds[[2]]
test2 <- all(abs(diff2 - diff2[1]) < 1e-4)

expect_true({
test1 & test2
}, "Interaction Contraint Satisfied")

})
9 changes: 8 additions & 1 deletion doc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@

# -- mock out modules
import mock
MOCK_MODULES = ['numpy', 'scipy', 'scipy.sparse', 'sklearn', 'matplotlib', 'pandas', 'graphviz']
MOCK_MODULES = ['scipy', 'scipy.sparse', 'sklearn', 'pandas']
for mod_name in MOCK_MODULES:
sys.modules[mod_name] = mock.Mock()

Expand All @@ -62,13 +62,20 @@
# Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones
extensions = [
'matplotlib.sphinxext.only_directives',
'matplotlib.sphinxext.plot_directive',
'sphinx.ext.autodoc',
'sphinx.ext.napoleon',
'sphinx.ext.mathjax',
'sphinx.ext.intersphinx',
'breathe'
]

graphviz_output_format = 'png'
plot_formats = [('svg', 300), ('png', 100), ('hires.png', 300)]
plot_html_show_source_link = False
plot_html_show_formats = False

# Breathe extension variables
breathe_projects = {"xgboost": "doxyxml/"}
breathe_default_project = "xgboost"
Expand Down
177 changes: 177 additions & 0 deletions doc/tutorials/feature_interaction_constraint.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
###############################
Feature Interaction Constraints
###############################

The decision tree is a powerful tool to discover interaction among independent
variables (features). Variables that appear together in a traversal path
are interacting with one another, since the condition of a child node is
predicated on the condition of the parent node. For example, the highlighted
red path in the diagram below contains three variables: :math:`x_1`, :math:`x_7`,
and :math:`x_{10}`, so the highlighted prediction (at the highlighted leaf node)
is the product of interaction between :math:`x_1`, :math:`x_7`, and
:math:`x_{10}`.

.. plot::
:nofigs:

from graphviz import Source
source = r"""
digraph feature_interaction_illustration1 {
graph [fontname = "helvetica"];
node [fontname = "helvetica"];
edge [fontname = "helvetica"];
0 [label=<x<SUB><FONT POINT-SIZE="11">10</FONT></SUB> &lt; -1.5 ?>, shape=box, color=red, fontcolor=red];
1 [label=<x<SUB><FONT POINT-SIZE="11">2</FONT></SUB> &lt; 2 ?>, shape=box];
2 [label=<x<SUB><FONT POINT-SIZE="11">7</FONT></SUB> &lt; 0.3 ?>, shape=box, color=red, fontcolor=red];
3 [label="...", shape=none];
4 [label="...", shape=none];
5 [label=<x<SUB><FONT POINT-SIZE="11">1</FONT></SUB> &lt; 0.5 ?>, shape=box, color=red, fontcolor=red];
6 [label="...", shape=none];
7 [label="...", shape=none];
8 [label="Predict +1.3", color=red, fontcolor=red];
0 -> 1 [labeldistance=2.0, labelangle=45, headlabel="Yes/Missing "];
0 -> 2 [labeldistance=2.0, labelangle=-45,
headlabel="No", color=red, fontcolor=red];
1 -> 3 [labeldistance=2.0, labelangle=45, headlabel="Yes"];
1 -> 4 [labeldistance=2.0, labelangle=-45, headlabel=" No/Missing"];
2 -> 5 [labeldistance=2.0, labelangle=-45, headlabel="Yes",
color=red, fontcolor=red];
2 -> 6 [labeldistance=2.0, labelangle=-45, headlabel=" No/Missing"];
5 -> 7;
5 -> 8 [color=red];
}
"""
Source(source, format='png').render('../_static/feature_interaction_illustration1', view=False)
Source(source, format='svg').render('../_static/feature_interaction_illustration1', view=False)

.. raw:: html

<p>
<img src="../_static/feature_interaction_illustration1.svg"
onerror="this.src='../_static/feature_interaction_illustration1.png'; this.onerror=null;">
</p>

When the tree depth is larger than one, many variables interact on
the sole basis of minimizing training loss, and the resulting decision tree may
capture a spurious relationship (noise) rather than a legitimate relationship
that generalizes across different datasets. **Feature interaction constraints**
allow users to decide which variables are allowed to interact and which are not.

Potential benefits include:

* Better predictive performance from focusing on interactions that work --
whether through domain specific knowledge or algorithms that rank interactions
* Less noise in predictions; better generalization
* More control to the user on what the model can fit. For example, the user may
want to exclude some interactions even if they perform well due to regulatory
constraints

****************
A Simple Example
****************

Feature interaction constraints are expressed in terms of groups of variables
that are allowed to interact. For example, the constraint
``[0, 1]`` indicates that variables :math:`x_0` and :math:`x_1` are allowed to
interact with each other but with no other variable. Similarly, ``[2, 3, 4]``
indicates that :math:`x_2`, :math:`x_3`, and :math:`x_4` are allowed to
interact with one another but with no other variable. A set of feature
interaction constraints is expressed as a nested list, e.g.
``[[0, 1], [2, 3, 4]]``, where each inner list is a group of indices of features
that are allowed to interact with each other.

In the following diagram, the left decision tree is in violation of the first
constraint (``[0, 1]``), whereas the right decision tree complies with both the
first and second constraints (``[0, 1]``, ``[2, 3, 4]``).

.. plot::
:nofigs:

from graphviz import Source
source = r"""
digraph feature_interaction_illustration2 {
graph [fontname = "helvetica"];
node [fontname = "helvetica"];
edge [fontname = "helvetica"];
0 [label=<x<SUB><FONT POINT-SIZE="11">0</FONT></SUB> &lt; 5.0 ?>, shape=box];
1 [label=<x<SUB><FONT POINT-SIZE="11">2</FONT></SUB> &lt; -3.0 ?>, shape=box];
2 [label="+0.6"];
3 [label="-0.4"];
4 [label="+1.2"];
0 -> 1 [labeldistance=2.0, labelangle=45, headlabel="Yes/Missing "];
0 -> 2 [labeldistance=2.0, labelangle=-45, headlabel="No"];
1 -> 3 [labeldistance=2.0, labelangle=45, headlabel="Yes"];
1 -> 4 [labeldistance=2.0, labelangle=-45, headlabel=" No/Missing"];
}
"""
Source(source, format='png').render('../_static/feature_interaction_illustration2', view=False)
Source(source, format='svg').render('../_static/feature_interaction_illustration2', view=False)

.. plot::
:nofigs:

from graphviz import Source
source = r"""
digraph feature_interaction_illustration3 {
graph [fontname = "helvetica"];
node [fontname = "helvetica"];
edge [fontname = "helvetica"];
0 [label=<x<SUB><FONT POINT-SIZE="11">3</FONT></SUB> &lt; 2.5 ?>, shape=box];
1 [label="+1.6"];
2 [label=<x<SUB><FONT POINT-SIZE="11">2</FONT></SUB> &lt; -1.2 ?>, shape=box];
3 [label="+0.1"];
4 [label="-0.3"];
0 -> 1 [labeldistance=2.0, labelangle=45, headlabel="Yes"];
0 -> 2 [labeldistance=2.0, labelangle=-45, headlabel=" No/Missing"];
2 -> 3 [labeldistance=2.0, labelangle=45, headlabel="Yes/Missing "];
2 -> 4 [labeldistance=2.0, labelangle=-45, headlabel="No"];
}
"""
Source(source, format='png').render('../_static/feature_interaction_illustration3', view=False)
Source(source, format='svg').render('../_static/feature_interaction_illustration3', view=False)

.. raw:: html

<p>
<img src="../_static/feature_interaction_illustration2.svg"
onerror="this.src='../_static/feature_interaction_illustration2.png'; this.onerror=null;">
<img src="../_static/feature_interaction_illustration3.svg"
onerror="this.src='../_static/feature_interaction_illustration3.png'; this.onerror=null;">
</p>

****************************************************
Enforcing Feature Interaction Constraints in XGBoost
****************************************************

It is very simple to enforce monotonicity constraints in XGBoost. Here we will
give an example using Python, but the same general idea generalizes to other
platforms.

Suppose the following code fits your model without monotonicity constraints:

.. code-block:: python
model_no_constraints = xgb.train(params, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)
Then fitting with monotonicity constraints only requires adding a single
parameter:

.. code-block:: python
params_constrained = params.copy()
# Use nested list to define feature interaction constraints
params_constrained['interaction_constraints'] = '[[0, 2], [1, 3, 4], [5, 6]]'
# Features 0 and 2 are allowed to interact with each other but with no other feature
# Features 1, 3, 4 are allowed to interact with one another but with no other feature
# Features 5 and 6 are allowed to interact with each other but with no other feature
model_with_constraints = xgb.train(params_constrained, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)
**Choice of tree construction algorithm**. To use feature interaction
constraints, be sure to set the ``tree_method`` parameter to either ``exact``
or ``hist``. Currently, GPU algorithms (``gpu_hist``, ``gpu_exact``) do not
support feature interaction constraints.
1 change: 1 addition & 0 deletions doc/tutorials/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,7 @@ See `Awesome XGBoost <https://github.com/dmlc/xgboost/tree/master/demo>`_ for mo
Distributed XGBoost with XGBoost4J-Spark <https://xgboost.readthedocs.io/en/latest/jvm/xgboost4j_spark_tutorial.html>
dart
monotonic
feature_interaction_constraint
input_format
param_tuning
external_memory
Expand Down
Loading

0 comments on commit 9254c58

Please sign in to comment.