Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R] Add parameters constructor #11072

Merged
merged 6 commits into from
Dec 8, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion R-package/NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ S3method(variable.names,xgb.Booster)
export("xgb.attr<-")
export("xgb.attributes<-")
export("xgb.config<-")
export("xgb.parameters<-")
export("xgb.model.parameters<-")
export(getinfo)
export(setinfo)
export(xgb.Callback)
Expand Down Expand Up @@ -61,6 +61,7 @@ export(xgb.is.same.Booster)
export(xgb.load)
export(xgb.load.raw)
export(xgb.model.dt.tree)
export(xgb.params)
export(xgb.plot.deepness)
export(xgb.plot.importance)
export(xgb.plot.multi.trees)
Expand Down
8 changes: 4 additions & 4 deletions R-package/R/callbacks.R
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@
#' dm <- xgb.DMatrix(x, label = y, nthread = 1)
#' model <- xgb.train(
#' data = dm,
#' params = list(objective = "reg:squarederror", nthread = 1),
#' params = xgb.params(objective = "reg:squarederror", nthread = 1),
#' nrounds = 5,
#' callbacks = list(ssq_callback),
#' keep_extra_attributes = TRUE
Expand Down Expand Up @@ -563,7 +563,7 @@ xgb.cb.reset.parameters <- function(new_params) {
}
},
f_before_iter = function(env, model, data, evals, iteration) {
pars <- lapply(env$new_params, function(p) {
params <- lapply(env$new_params, function(p) {
if (is.function(p)) {
return(p(iteration, env$end_iteration))
} else {
Expand All @@ -572,10 +572,10 @@ xgb.cb.reset.parameters <- function(new_params) {
})

if (inherits(model, "xgb.Booster")) {
xgb.parameters(model) <- pars
xgb.model.parameters(model) <- params
} else {
for (fd in model) {
xgb.parameters(fd$bst) <- pars
xgb.model.parameters(fd$bst) <- params
}
}
return(FALSE)
Expand Down
26 changes: 13 additions & 13 deletions R-package/R/xgb.Booster.R
Original file line number Diff line number Diff line change
Expand Up @@ -20,20 +20,20 @@ xgb.Booster <- function(params, cachelist, modelfile) {
.Call(XGBoosterLoadModel_R, xgb.get.handle(bst), enc2utf8(modelfile[1]))
niter <- xgb.get.num.boosted.rounds(bst)
if (length(params) > 0) {
xgb.parameters(bst) <- params
xgb.model.parameters(bst) <- params
}
return(list(bst = bst, niter = niter))
} else if (is.raw(modelfile)) {
## A memory buffer
bst <- xgb.load.raw(modelfile)
niter <- xgb.get.num.boosted.rounds(bst)
xgb.parameters(bst) <- params
xgb.model.parameters(bst) <- params
return(list(bst = bst, niter = niter))
} else if (inherits(modelfile, "xgb.Booster")) {
## A booster object
bst <- .Call(XGDuplicate_R, modelfile)
niter <- xgb.get.num.boosted.rounds(bst)
xgb.parameters(bst) <- params
xgb.model.parameters(bst) <- params
return(list(bst = bst, niter = niter))
} else {
stop("modelfile must be either character filename, or raw booster dump, or xgb.Booster object")
Expand All @@ -42,7 +42,7 @@ xgb.Booster <- function(params, cachelist, modelfile) {
## Create new model
bst <- .Call(XGBoosterCreate_R, cachelist)
if (length(params) > 0) {
xgb.parameters(bst) <- params
xgb.model.parameters(bst) <- params
}
return(list(bst = bst, niter = 0L))
}
Expand Down Expand Up @@ -196,7 +196,7 @@ xgb.get.handle <- function(object) {
#' of the most important features first. See below about the format of the returned results.
#'
#' The `predict()` method uses as many threads as defined in `xgb.Booster` object (all by default).
#' If you want to change their number, assign a new number to `nthread` using [xgb.parameters<-()].
#' If you want to change their number, assign a new number to `nthread` using [xgb.model.parameters<-()].
#' Note that converting a matrix to [xgb.DMatrix()] uses multiple threads too.
#'
#' @return
Expand Down Expand Up @@ -631,7 +631,7 @@ validate.features <- function(bst, newdata) {
#' and its serialization is handled externally.
#' Also, setting an attribute that has the same name as one of XGBoost's parameters wouldn't
#' change the value of that parameter for a model.
#' Use [xgb.parameters<-()] to set or change model parameters.
#' Use [xgb.model.parameters<-()] to set or change model parameters.
#'
#' The `xgb.attributes<-` setter either updates the existing or adds one or several attributes,
#' but it doesn't delete the other existing attributes.
Expand Down Expand Up @@ -828,11 +828,11 @@ xgb.config <- function(object) {
#' objective = "binary:logistic"
#' )
#'
#' xgb.parameters(bst) <- list(eta = 0.1)
#' xgb.model.parameters(bst) <- list(eta = 0.1)
#'
#' @rdname xgb.parameters
#' @rdname xgb.model.parameters
#' @export
`xgb.parameters<-` <- function(object, value) {
`xgb.model.parameters<-` <- function(object, value) {
if (length(value) == 0) return(object)
p <- as.list(value)
if (is.null(names(p)) || any(nchar(names(p)) == 0)) {
Expand Down Expand Up @@ -897,7 +897,7 @@ setinfo.xgb.Booster <- function(object, name, info) {
#' @param model,x A fitted `xgb.Booster` model.
#' @return The number of rounds saved in the model as an integer.
#' @details Note that setting booster parameters related to training
#' continuation / updates through [xgb.parameters<-()] will reset the
#' continuation / updates through [xgb.model.parameters<-()] will reset the
#' number of rounds to zero.
#' @export
#' @rdname xgb.get.num.boosted.rounds
Expand Down Expand Up @@ -936,7 +936,7 @@ length.xgb.Booster <- function(x) {
#' x <- as.matrix(mtcars[, -1])
#'
#' dm <- xgb.DMatrix(x, label = y, nthread = 1)
#' model <- xgb.train(data = dm, params = list(nthread = 1), nrounds = 5)
#' model <- xgb.train(data = dm, params = xgb.params(nthread = 1), nrounds = 5)
#' model_slice <- xgb.slice.Booster(model, 1, 3)
#' # Prediction for first three rounds
#' predict(model, x, predleaf = TRUE)[, 1:3]
Expand Down Expand Up @@ -1163,7 +1163,7 @@ coef.xgb.Booster <- function(object, ...) {
#'
#' model <- xgb.train(
#' data = dm,
#' params = list(nthread = 1),
#' params = xgb.params(nthread = 1),
#' nround = 3
#' )
#'
Expand Down Expand Up @@ -1225,7 +1225,7 @@ xgb.copy.Booster <- function(model) {
#' x <- as.matrix(mtcars[, -1])
#'
#' model <- xgb.train(
#' params = list(nthread = 1),
#' params = xgb.params(nthread = 1),
#' data = xgb.DMatrix(x, label = y, nthread = 1),
#' nround = 3
#' )
Expand Down
2 changes: 1 addition & 1 deletion R-package/R/xgb.DMatrix.R
Original file line number Diff line number Diff line change
Expand Up @@ -1136,7 +1136,7 @@ setinfo.xgb.DMatrix <- function(object, name, info) {
#' # DMatrix is not quantized right away, but will be once a hist model is generated
#' model <- xgb.train(
#' data = dm,
#' params = list(tree_method = "hist", max_bin = 8, nthread = 1),
#' params = xgb.params(tree_method = "hist", max_bin = 8, nthread = 1),
#' nrounds = 3
#' )
#'
Expand Down
26 changes: 4 additions & 22 deletions R-package/R/xgb.cv.R
Original file line number Diff line number Diff line change
Expand Up @@ -2,24 +2,7 @@
#'
#' The cross validation function of xgboost.
#'
#' @param params The list of parameters. The complete list of parameters is available in the
#' [online documentation](http://xgboost.readthedocs.io/en/latest/parameter.html).
#' Below is a shorter summary:
#' - `objective`: Objective function, common ones are
#' - `reg:squarederror`: Regression with squared loss.
#' - `binary:logistic`: Logistic regression for classification.
#'
#' See [xgb.train()] for complete list of objectives.
#' - `eta`: Step size of each boosting step
#' - `max_depth`: Maximum depth of the tree
#' - `nthread`: Number of threads used in training. If not set, all threads are used
#'
#' See [xgb.train()] for further details.
#' See also demo for walkthrough example in R.
#'
#' Note that, while `params` accepts a `seed` entry and will use such parameter for model training if
#' supplied, this seed is not used for creation of train-test splits, which instead rely on R's own RNG
#' system - thus, for reproducible results, one needs to call the [set.seed()] function beforehand.
#' @inheritParams xgb.train
#' @param data An `xgb.DMatrix` object, with corresponding fields like `label` or bounds as required
#' for model training by the objective.
#'
Expand Down Expand Up @@ -84,8 +67,6 @@
#' See [xgb.Callback()]. Some of the callbacks are automatically created depending on the
#' parameters' values. User can provide either existing or their own callback methods in order
#' to customize the training process.
#' @param ... Other parameters to pass to `params`.
#'
#' @details
#' The original sample is randomly partitioned into `nfold` equal size subsamples.
#'
Expand Down Expand Up @@ -133,13 +114,14 @@
#' nfold = 5,
#' metrics = list("rmse","auc"),
#' max_depth = 3,
#' eta = 1,objective = "binary:logistic"
#' eta = 1,
#' objective = "binary:logistic"
#' )
#' print(cv)
#' print(cv, verbose = TRUE)
#'
#' @export
xgb.cv <- function(params = list(), data, nrounds, nfold,
xgb.cv <- function(params = xgb.params(), data, nrounds, nfold,
prediction = FALSE, showsd = TRUE, metrics = list(),
obj = NULL, feval = NULL, stratified = "auto", folds = NULL, train_folds = NULL,
verbose = TRUE, print_every_n = 1L,
Expand Down
Loading
Loading