Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[R] Error out on unrecognized arguments and ... parameters #11074

Merged
merged 1 commit into from
Dec 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 21 additions & 22 deletions R-package/R/callbacks.R
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@
#' will be the same as parameter `begin_iteration`, then next one will add +1, and so on).
#'
#' - iter_feval Evaluation metrics for `evals` that were supplied, either
#' determined by the objective, or by parameter `feval`.
#' determined by the objective, or by parameter `custom_metric`.
#'
#' For [xgb.train()], this will be a named vector with one entry per element in
#' `evals`, where the names are determined as 'evals name' + '-' + 'metric name' - for
Expand Down Expand Up @@ -206,8 +206,7 @@
#' data = dm,
#' params = xgb.params(objective = "reg:squarederror", nthread = 1),
#' nrounds = 5,
#' callbacks = list(ssq_callback),
#' keep_extra_attributes = TRUE
#' callbacks = list(ssq_callback)
#' )
#'
#' # Result from 'f_after_iter' will be available as an attribute
Expand Down Expand Up @@ -451,7 +450,7 @@ xgb.cb.print.evaluation <- function(period = 1, showsd = TRUE) {
#' Callback for logging the evaluation history
#'
#' @details This callback creates a table with per-iteration evaluation metrics (see parameters
#' `evals` and `feval` in [xgb.train()]).
#' `evals` and `custom_metric` in [xgb.train()]).
#'
#' Note: in the column names of the final data.table, the dash '-' character is replaced with
#' the underscore '_' in order to make the column names more like regular R identifiers.
Expand Down Expand Up @@ -957,7 +956,7 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' label = 1 * (iris$Species == "versicolor"),
#' nthread = nthread
#' )
#' param <- list(
#' param <- xgb.params(
#' booster = "gblinear",
#' objective = "reg:logistic",
#' eval_metric = "auc",
Expand All @@ -971,11 +970,10 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' # rate does not break the convergence, but allows us to illustrate the typical pattern of
#' # "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations.
#' bst <- xgb.train(
#' param,
#' c(param, list(eta = 1.)),
#' dtrain,
#' list(tr = dtrain),
#' evals = list(tr = dtrain),
#' nrounds = 200,
#' eta = 1.,
#' callbacks = list(xgb.cb.gblinear.history())
#' )
#'
Expand All @@ -986,14 +984,18 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' # With the deterministic coordinate descent updater, it is safer to use higher learning rates.
#' # Will try the classical componentwise boosting which selects a single best feature per round:
#' bst <- xgb.train(
#' param,
#' c(
#' param,
#' xgb.params(
#' eta = 0.8,
#' updater = "coord_descent",
#' feature_selector = "thrifty",
#' top_k = 1
#' )
#' ),
#' dtrain,
#' list(tr = dtrain),
#' evals = list(tr = dtrain),
#' nrounds = 200,
#' eta = 0.8,
#' updater = "coord_descent",
#' feature_selector = "thrifty",
#' top_k = 1,
#' callbacks = list(xgb.cb.gblinear.history())
#' )
#' matplot(xgb.gblinear.history(bst), type = "l")
Expand All @@ -1003,11 +1005,10 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#'
#' # For xgb.cv:
#' bst <- xgb.cv(
#' param,
#' c(param, list(eta = 0.8)),
#' dtrain,
#' nfold = 5,
#' nrounds = 100,
#' eta = 0.8,
#' callbacks = list(xgb.cb.gblinear.history())
#' )
#' # coefficients in the CV fold #3
Expand All @@ -1017,7 +1018,7 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' #### Multiclass classification:
#' dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = nthread)
#'
#' param <- list(
#' param <- xgb.params(
#' booster = "gblinear",
#' objective = "multi:softprob",
#' num_class = 3,
Expand All @@ -1029,11 +1030,10 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#' # For the default linear updater 'shotgun' it sometimes is helpful
#' # to use smaller eta to reduce instability
#' bst <- xgb.train(
#' param,
#' c(param, list(eta = 0.5)),
#' dtrain,
#' list(tr = dtrain),
#' evals = list(tr = dtrain),
#' nrounds = 50,
#' eta = 0.5,
#' callbacks = list(xgb.cb.gblinear.history())
#' )
#'
Expand All @@ -1044,11 +1044,10 @@ xgb.cb.cv.predict <- function(save_models = FALSE, outputmargin = FALSE) {
#'
#' # CV:
#' bst <- xgb.cv(
#' param,
#' c(param, list(eta = 0.5)),
#' dtrain,
#' nfold = 5,
#' nrounds = 70,
#' eta = 0.5,
#' callbacks = list(xgb.cb.gblinear.history(FALSE))
#' )
#' # 1st fold of 1st class
Expand Down
Loading
Loading