Skip to content

Commit

Permalink
feat: add solutions to lc problem: No.0063 (#4046)
Browse files Browse the repository at this point in the history
No.0063.Unique Paths II
  • Loading branch information
yanglbme authored Feb 8, 2025
1 parent f92488f commit 05543d9
Show file tree
Hide file tree
Showing 8 changed files with 295 additions and 57 deletions.
8 changes: 4 additions & 4 deletions README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,9 @@ This project contains solutions for problems from LeetCode, "Coding Interviews (

[中文文档](/README.md)

## Sites
## Site

https://doocs.github.io/leetcode
https://doocs.github.io/leetcode/en

## Solutions

Expand All @@ -31,8 +31,8 @@ https://doocs.github.io/leetcode

## JavaScript & Database Practice

- [JavaScript Practice](/solution/JAVASCRIPT_README_EN.md)
- [Database Practice](/solution/DATABASE_README_EN.md)
- [JavaScript](/solution/JAVASCRIPT_README_EN.md)
- [Database](/solution/DATABASE_README_EN.md)

## Topics

Expand Down
137 changes: 103 additions & 34 deletions solution/0000-0099/0063.Unique Paths II/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,13 +65,13 @@ tags:

### 方法一:记忆化搜索

我们设计一个函数 $dfs(i, j)$ 表示从网格 $(i, j)$ 到网格 $(m - 1, n - 1)$ 的路径数。其中 $m$ 和 $n$ 分别是网格的行数和列数。
我们设计一个函数 $\textit{dfs}(i, j)$ 表示从网格 $(i, j)$ 到网格 $(m - 1, n - 1)$ 的路径数。其中 $m$ 和 $n$ 分别是网格的行数和列数。

函数 $dfs(i, j)$ 的执行过程如下:
函数 $\textit{dfs}(i, j)$ 的执行过程如下:

- 如果 $i \ge m$ 或者 $j \ge n$,或者 $obstacleGrid[i][j] = 1$,则路径数为 $0$;
- 如果 $i \ge m$ 或者 $j \ge n$,或者 $\textit{obstacleGrid}[i][j] = 1$,则路径数为 $0$;
- 如果 $i = m - 1$ 且 $j = n - 1$,则路径数为 $1$;
- 否则,路径数为 $dfs(i + 1, j) + dfs(i, j + 1)$。
- 否则,路径数为 $\textit{dfs}(i + 1, j) + \textit{dfs}(i, j + 1)$。

为了避免重复计算,我们可以使用记忆化搜索的方法。

Expand Down Expand Up @@ -135,9 +135,8 @@ class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
int f[m][n];
memset(f, -1, sizeof(f));
function<int(int, int)> dfs = [&](int i, int j) {
vector<vector<int>> f(m, vector<int>(n, -1));
auto dfs = [&](this auto&& dfs, int i, int j) {
if (i >= m || j >= n || obstacleGrid[i][j]) {
return 0;
}
Expand Down Expand Up @@ -206,6 +205,64 @@ function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
}
```

#### Rust

```rust
impl Solution {
pub fn unique_paths_with_obstacles(obstacle_grid: Vec<Vec<i32>>) -> i32 {
let m = obstacle_grid.len();
let n = obstacle_grid[0].len();
let mut f = vec![vec![-1; n]; m];
Self::dfs(0, 0, &obstacle_grid, &mut f)
}

fn dfs(i: usize, j: usize, obstacle_grid: &Vec<Vec<i32>>, f: &mut Vec<Vec<i32>>) -> i32 {
let m = obstacle_grid.len();
let n = obstacle_grid[0].len();
if i >= m || j >= n || obstacle_grid[i][j] == 1 {
return 0;
}
if i == m - 1 && j == n - 1 {
return 1;
}
if f[i][j] != -1 {
return f[i][j];
}
let down = Self::dfs(i + 1, j, obstacle_grid, f);
let right = Self::dfs(i, j + 1, obstacle_grid, f);
f[i][j] = down + right;
f[i][j]
}
}
```

#### JavaScript

```js
/**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function (obstacleGrid) {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(-1));
const dfs = (i, j) => {
if (i >= m || j >= n || obstacleGrid[i][j] === 1) {
return 0;
}
if (i === m - 1 && j === n - 1) {
return 1;
}
if (f[i][j] === -1) {
f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
}
return f[i][j];
};
return dfs(0, 0);
};
```

<!-- tabs:end -->

<!-- solution:end -->
Expand All @@ -214,12 +271,12 @@ function uniquePathsWithObstacles(obstacleGrid: number[][]): number {

### 方法二:动态规划

我们定义 $f[i][j]$ 表示到达网格 $(i,j)$ 的路径数。
我们可以使用动态规划的方法,定义一个二维数组 $f$,其中 $f[i][j]$ 表示从网格 $(0,0)$ 到网格 $(i,j)$ 的路径数。

首先初始化 $f$ 第一列和第一行的所有值,然后遍历其它行和列,有两种情况:
我们首先初始化 $f$ 的第一列和第一行的所有值,然后遍历其它行和列,有两种情况:

- 若 $obstacleGrid[i][j] = 1$,说明路径数为 $0$,那么 $f[i][j] = 0$;
- 若 $obstacleGrid[i][j] = 0$,则 $f[i][j] = f[i - 1][j] + f[i][j - 1]$。
- 若 $\textit{obstacleGrid}[i][j] = 1$,说明路径数为 $0$,那么 $f[i][j] = 0$;
- 若 $\textit{obstacleGrid}[i][j] = 0$,则 $f[i][j] = f[i - 1][j] + f[i][j - 1]$。

最后返回 $f[m - 1][n - 1]$ 即可。

Expand Down Expand Up @@ -357,29 +414,6 @@ function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
}
```

#### TypeScript

```ts
function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f: number[][] = Array.from({ length: m }, () => Array(n).fill(-1));
const dfs = (i: number, j: number): number => {
if (i >= m || j >= n || obstacleGrid[i][j] === 1) {
return 0;
}
if (i === m - 1 && j === n - 1) {
return 1;
}
if (f[i][j] === -1) {
f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
}
return f[i][j];
};
return dfs(0, 0);
}
```

#### Rust

```rust
Expand Down Expand Up @@ -413,6 +447,41 @@ impl Solution {
}
```

#### JavaScript

```js
/**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function (obstacleGrid) {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(0));
for (let i = 0; i < m; i++) {
if (obstacleGrid[i][0] === 1) {
break;
}
f[i][0] = 1;
}
for (let i = 0; i < n; i++) {
if (obstacleGrid[0][i] === 1) {
break;
}
f[0][i] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
if (obstacleGrid[i][j] === 1) {
continue;
}
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
};
```

<!-- tabs:end -->

<!-- solution:end -->
Expand Down
122 changes: 107 additions & 15 deletions solution/0000-0099/0063.Unique Paths II/README_EN.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,17 +63,17 @@ There are two ways to reach the bottom-right corner:

### Solution 1: Memoization Search

We design a function $dfs(i, j)$ to represent the number of paths from the grid $(i, j)$ to the grid $(m - 1, n - 1)$, where $m$ and $n$ are the number of rows and columns of the grid, respectively.
We design a function $\textit{dfs}(i, j)$ to represent the number of paths from the grid $(i, j)$ to the grid $(m - 1, n - 1)$. Here, $m$ and $n$ are the number of rows and columns of the grid, respectively.

The execution process of the function $dfs(i, j)$ is as follows:
The execution process of the function $\textit{dfs}(i, j)$ is as follows:

- If $i \ge m$ or $j \ge n$, or $obstacleGrid[i][j] = 1$, then the number of paths is $0$;
- If $i = m - 1$ and $j = n - 1$, then the number of paths is $1$;
- Otherwise, the number of paths is $dfs(i + 1, j) + dfs(i, j + 1)$.
- If $i \ge m$ or $j \ge n$, or $\textit{obstacleGrid}[i][j] = 1$, the number of paths is $0$;
- If $i = m - 1$ and $j = n - 1$, the number of paths is $1$;
- Otherwise, the number of paths is $\textit{dfs}(i + 1, j) + \textit{dfs}(i, j + 1)$.

To avoid repeated calculations, we can use the method of memoization search.
To avoid redundant calculations, we can use memoization.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Where $m$ and $n$ are the number of rows and columns of the grid, respectively.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the grid, respectively.

<!-- tabs:start -->

Expand Down Expand Up @@ -133,9 +133,8 @@ class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
int f[m][n];
memset(f, -1, sizeof(f));
function<int(int, int)> dfs = [&](int i, int j) {
vector<vector<int>> f(m, vector<int>(n, -1));
auto dfs = [&](this auto&& dfs, int i, int j) {
if (i >= m || j >= n || obstacleGrid[i][j]) {
return 0;
}
Expand Down Expand Up @@ -204,6 +203,64 @@ function uniquePathsWithObstacles(obstacleGrid: number[][]): number {
}
```

#### Rust

```rust
impl Solution {
pub fn unique_paths_with_obstacles(obstacle_grid: Vec<Vec<i32>>) -> i32 {
let m = obstacle_grid.len();
let n = obstacle_grid[0].len();
let mut f = vec![vec![-1; n]; m];
Self::dfs(0, 0, &obstacle_grid, &mut f)
}

fn dfs(i: usize, j: usize, obstacle_grid: &Vec<Vec<i32>>, f: &mut Vec<Vec<i32>>) -> i32 {
let m = obstacle_grid.len();
let n = obstacle_grid[0].len();
if i >= m || j >= n || obstacle_grid[i][j] == 1 {
return 0;
}
if i == m - 1 && j == n - 1 {
return 1;
}
if f[i][j] != -1 {
return f[i][j];
}
let down = Self::dfs(i + 1, j, obstacle_grid, f);
let right = Self::dfs(i, j + 1, obstacle_grid, f);
f[i][j] = down + right;
f[i][j]
}
}
```

#### JavaScript

```js
/**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function (obstacleGrid) {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(-1));
const dfs = (i, j) => {
if (i >= m || j >= n || obstacleGrid[i][j] === 1) {
return 0;
}
if (i === m - 1 && j === n - 1) {
return 1;
}
if (f[i][j] === -1) {
f[i][j] = dfs(i + 1, j) + dfs(i, j + 1);
}
return f[i][j];
};
return dfs(0, 0);
};
```

<!-- tabs:end -->

<!-- solution:end -->
Expand All @@ -212,16 +269,16 @@ function uniquePathsWithObstacles(obstacleGrid: number[][]): number {

### Solution 2: Dynamic Programming

We define $f[i][j]$ as the number of paths to reach the grid $(i,j)$.
We can use a dynamic programming approach by defining a 2D array $f$, where $f[i][j]$ represents the number of paths from the grid $(0,0)$ to the grid $(i,j)$.

First, initialize all values in the first column and first row of $f$. Then, traverse other rows and columns, there are two cases:
We first initialize all values in the first column and the first row of $f$, then traverse the other rows and columns with two cases:

- If $obstacleGrid[i][j] = 1$, it means the number of paths is $0$, so $f[i][j] = 0$;
- If $obstacleGrid[i][j] = 0$, then $f[i][j] = f[i - 1][j] + f[i][j - 1]$.
- If $\textit{obstacleGrid}[i][j] = 1$, it means the number of paths is $0$, so $f[i][j] = 0$;
- If $\textit{obstacleGrid}[i][j] = 0$, then $f[i][j] = f[i - 1][j] + f[i][j - 1]$.

Finally, return $f[m - 1][n - 1]$.

The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Where $m$ and $n$ are the number of rows and columns of the grid, respectively.
The time complexity is $O(m \times n)$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the grid, respectively.

<!-- tabs:start -->

Expand Down Expand Up @@ -388,6 +445,41 @@ impl Solution {
}
```

#### JavaScript

```js
/**
* @param {number[][]} obstacleGrid
* @return {number}
*/
var uniquePathsWithObstacles = function (obstacleGrid) {
const m = obstacleGrid.length;
const n = obstacleGrid[0].length;
const f = Array.from({ length: m }, () => Array(n).fill(0));
for (let i = 0; i < m; i++) {
if (obstacleGrid[i][0] === 1) {
break;
}
f[i][0] = 1;
}
for (let i = 0; i < n; i++) {
if (obstacleGrid[0][i] === 1) {
break;
}
f[0][i] = 1;
}
for (let i = 1; i < m; i++) {
for (let j = 1; j < n; j++) {
if (obstacleGrid[i][j] === 1) {
continue;
}
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
return f[m - 1][n - 1];
};
```

<!-- tabs:end -->

<!-- solution:end -->
Expand Down
7 changes: 3 additions & 4 deletions solution/0000-0099/0063.Unique Paths II/Solution.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,8 @@ class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
int f[m][n];
memset(f, -1, sizeof(f));
function<int(int, int)> dfs = [&](int i, int j) {
vector<vector<int>> f(m, vector<int>(n, -1));
auto dfs = [&](this auto&& dfs, int i, int j) {
if (i >= m || j >= n || obstacleGrid[i][j]) {
return 0;
}
Expand All @@ -18,4 +17,4 @@ class Solution {
};
return dfs(0, 0);
}
};
};
Loading

0 comments on commit 05543d9

Please sign in to comment.