-
Notifications
You must be signed in to change notification settings - Fork 40
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
210 changed files
with
65,463 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import copy | ||
''' | ||
You can implement your own Converter, check example ConverterMasked.py | ||
''' | ||
|
||
class Converter(object): | ||
TYPE_FACE = 0 #calls convert_face | ||
TYPE_FACE_AVATAR = 1 #calls convert_face with avatar_operator_face | ||
TYPE_IMAGE = 2 #calls convert_image without landmarks | ||
TYPE_IMAGE_WITH_LANDMARKS = 3 #calls convert_image with landmarks | ||
|
||
#overridable | ||
def __init__(self, predictor_func, type): | ||
self.predictor_func = predictor_func | ||
self.type = type | ||
|
||
#overridable | ||
def on_cli_initialize(self): | ||
#cli initialization | ||
pass | ||
|
||
#overridable | ||
def on_host_tick(self): | ||
pass | ||
|
||
#overridable | ||
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, avaperator_face_bgr=None, **kwargs): | ||
#return float32 image | ||
#if debug , return tuple ( images of any size and channels, ...) | ||
return image | ||
|
||
#overridable | ||
def cli_convert_image (self, img_bgr, img_landmarks, debug): | ||
#img_landmarks not None, if input image is png with embedded data | ||
#return float32 image | ||
#if debug , return tuple ( images of any size and channels, ...) | ||
return image | ||
|
||
#overridable | ||
def dummy_predict(self): | ||
#do dummy predict here | ||
pass | ||
|
||
def copy(self): | ||
return copy.copy(self) | ||
|
||
def copy_and_set_predictor(self, predictor_func): | ||
result = self.copy() | ||
result.predictor_func = predictor_func | ||
return result |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import time | ||
|
||
import cv2 | ||
import numpy as np | ||
|
||
from facelib import FaceType, LandmarksProcessor | ||
from joblib import SubprocessFunctionCaller | ||
from utils.pickle_utils import AntiPickler | ||
|
||
from .Converter import Converter | ||
|
||
class ConverterAvatar(Converter): | ||
|
||
#override | ||
def __init__(self, predictor_func, | ||
predictor_input_size=0): | ||
|
||
super().__init__(predictor_func, Converter.TYPE_FACE_AVATAR) | ||
|
||
self.predictor_input_size = predictor_input_size | ||
|
||
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower | ||
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ), | ||
np.zeros ( (predictor_input_size,predictor_input_size,1), dtype=np.float32 ) ) | ||
time.sleep(2) | ||
|
||
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func) | ||
self.predictor_func_host = AntiPickler(predictor_func_host) | ||
self.predictor_func = predictor_func | ||
|
||
#overridable | ||
def on_host_tick(self): | ||
self.predictor_func_host.obj.process_messages() | ||
|
||
#override | ||
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, avaperator_face_bgr=None, **kwargs): | ||
if debug: | ||
debugs = [img_bgr.copy()] | ||
|
||
img_size = img_bgr.shape[1], img_bgr.shape[0] | ||
|
||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks) | ||
img_face_mask_aaa = np.repeat(img_face_mask_a, 3, -1) | ||
|
||
output_size = self.predictor_input_size | ||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=FaceType.FULL) | ||
|
||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC ) | ||
|
||
predictor_input_dst_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size), cv2.INTER_CUBIC ) | ||
prd_inp_dst_face_mask_a = predictor_input_dst_face_mask_a_0[...,np.newaxis] | ||
|
||
prd_inp_avaperator_face_bgr = cv2.resize (avaperator_face_bgr, (self.predictor_input_size,self.predictor_input_size), cv2.INTER_CUBIC ) | ||
|
||
prd_face_bgr = self.predictor_func ( prd_inp_avaperator_face_bgr, prd_inp_dst_face_mask_a ) | ||
|
||
out_img = img_bgr.copy() | ||
out_img = cv2.warpAffine( prd_face_bgr, face_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) | ||
out_img = np.clip(out_img, 0.0, 1.0) | ||
|
||
if debug: | ||
debugs += [out_img.copy()] | ||
|
||
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) , 0, 1.0 ) | ||
|
||
if debug: | ||
debugs += [out_img.copy()] | ||
|
||
|
||
return debugs if debug else out_img |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
import time | ||
|
||
import cv2 | ||
import numpy as np | ||
|
||
from facelib import FaceType, LandmarksProcessor | ||
from joblib import SubprocessFunctionCaller | ||
from utils.pickle_utils import AntiPickler | ||
|
||
from .Converter import Converter | ||
|
||
class ConverterImage(Converter): | ||
|
||
#override | ||
def __init__(self, predictor_func, | ||
predictor_input_size=0): | ||
|
||
super().__init__(predictor_func, Converter.TYPE_IMAGE) | ||
|
||
self.predictor_input_size = predictor_input_size | ||
|
||
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower | ||
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) ) | ||
time.sleep(2) | ||
|
||
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func) | ||
self.predictor_func_host = AntiPickler(predictor_func_host) | ||
self.predictor_func = predictor_func | ||
|
||
#overridable | ||
def on_host_tick(self): | ||
self.predictor_func_host.obj.process_messages() | ||
|
||
#override | ||
def cli_convert_image (self, img_bgr, img_landmarks, debug): | ||
img_size = img_bgr.shape[1], img_bgr.shape[0] | ||
|
||
predictor_input_bgr = cv2.resize ( img_bgr, (self.predictor_input_size, self.predictor_input_size), cv2.INTER_LANCZOS4 ) | ||
|
||
if debug: | ||
debugs = [predictor_input_bgr] | ||
|
||
output = self.predictor_func ( predictor_input_bgr ) | ||
|
||
if debug: | ||
return (predictor_input_bgr,output,) | ||
if debug: | ||
debugs += [out_img.copy()] | ||
|
||
return debugs if debug else output |
Oops, something went wrong.