Skip to content

Commit

Permalink
[Usa1998Q3] simpler proof of lemma2'
Browse files Browse the repository at this point in the history
  • Loading branch information
dwrensha committed Aug 24, 2023
1 parent c85ec1f commit 347a886
Showing 1 changed file with 1 addition and 11 deletions.
12 changes: 1 addition & 11 deletions MathPuzzles/Usa1998Q3.lean
Original file line number Diff line number Diff line change
Expand Up @@ -63,17 +63,7 @@ lemma lemma1 (x : ℝ) (hx : x ∈ Set.Ioo 0 (Real.pi / 2)) :
· exact hx.2

lemma lemma2' (n : ℕ) : Finset.erase (Finset.range (n + 1)) n = Finset.range n :=
by ext a
rw[Finset.mem_erase, Finset.mem_range, Finset.mem_range]
constructor
· intro ⟨ha1, ha2⟩
obtain h1 | h2 := Iff.mp Order.lt_succ_iff_eq_or_lt ha2
· exact (ha1 h1).elim
· exact h2
· intro ha
constructor
· exact Nat.ne_of_lt ha
· exact Nat.lt_add_right a n 1 ha
by rw[←Nat.succ_eq_add_one, Finset.range_succ]; simp

lemma lemma2 (f : ℕ → ℝ) :
∏ i in Finset.range (n + 1), ∏ j in Finset.erase (Finset.range (n + 1)) i, f j =
Expand Down

0 comments on commit 347a886

Please sign in to comment.