-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* init * updates from run * download results * remove models list * update * remove test ci bump * fix tests * small fixes * small fixes * change -1 to nan * update paths * get back removed files * get back removed files * rename mteb version name * change evaluation time and mteb version to null * fixes * pre-release fix
- Loading branch information
Showing
15,187 changed files
with
879,409 additions
and
25,915 deletions.
The diff you're trying to view is too large. We only load the first 3000 changed files.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
from __future__ import annotations | ||
|
||
import json | ||
import logging | ||
import math | ||
import re | ||
from pathlib import Path | ||
from typing import Any | ||
|
||
from huggingface_hub import HfApi, get_hf_file_metadata, hf_hub_download, hf_hub_url | ||
from huggingface_hub.errors import NotASafetensorsRepoError | ||
from huggingface_hub.hf_api import ModelInfo | ||
from huggingface_hub.repocard import metadata_load | ||
from mteb import ModelMeta, get_task | ||
|
||
API = HfApi() | ||
logger = logging.getLogger(__name__) | ||
|
||
|
||
library_mapping = { | ||
"sentence-transformers": "Sentence Transformers", | ||
} | ||
|
||
|
||
def get_model_dir(model_id: str) -> Path: | ||
external_result_dir = Path("results") / model_id.replace("/", "__") / "external" | ||
return external_result_dir | ||
|
||
|
||
def simplify_dataset_name(name: str) -> str: | ||
return name.replace("MTEB ", "").split()[0] | ||
|
||
|
||
def get_model_parameters_memory(model_info: ModelInfo) -> tuple[int| None, float|None]: | ||
try: | ||
safetensors = API.get_safetensors_metadata(model_info.id) | ||
num_parameters = sum(safetensors.parameter_count.values()) | ||
return num_parameters, round(num_parameters * 4 / 1024 ** 3, 2) | ||
except NotASafetensorsRepoError as e: | ||
logger.info(f"Could not find SafeTensors metadata for {model_info.id}") | ||
|
||
filenames = [sib.rfilename for sib in model_info.siblings] | ||
if "pytorch_model.bin" in filenames: | ||
url = hf_hub_url(model_info.id, filename="pytorch_model.bin") | ||
meta = get_hf_file_metadata(url) | ||
bytes_per_param = 4 | ||
num_params = round(meta.size / bytes_per_param) | ||
size_gb = round(meta.size * (4 / bytes_per_param) / 1024 ** 3, 2) | ||
return num_params, size_gb | ||
if "pytorch_model.bin.index.json" in filenames: | ||
index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json") | ||
size = json.load(open(index_path)) | ||
bytes_per_param = 4 | ||
if "metadata" in size and "total_size" in size["metadata"]: | ||
return round(size["metadata"]["total_size"] / bytes_per_param), round(size["metadata"]["total_size"] / 1024 ** 3, 2) | ||
logger.info(f"Could not find the model parameters for {model_info.id}") | ||
return None, None | ||
|
||
|
||
def get_dim_seq_size(model: ModelInfo) -> tuple[str | None, str | None, int, float]: | ||
siblings = model.siblings or [] | ||
filenames = [sib.rfilename for sib in siblings] | ||
dim, seq = None, None | ||
for filename in filenames: | ||
if re.match(r"\d+_Pooling/config.json", filename): | ||
st_config_path = hf_hub_download(model.id, filename=filename) | ||
dim = json.load(open(st_config_path)).get("word_embedding_dimension", None) | ||
break | ||
for filename in filenames: | ||
if re.match(r"\d+_Dense/config.json", filename): | ||
st_config_path = hf_hub_download(model.id, filename=filename) | ||
dim = json.load(open(st_config_path)).get("out_features", dim) | ||
if "config.json" in filenames: | ||
config_path = hf_hub_download(model.id, filename="config.json") | ||
config = json.load(open(config_path)) | ||
if not dim: | ||
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", None))) | ||
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", None)))) | ||
|
||
parameters, memory = get_model_parameters_memory(model) | ||
return dim, seq, parameters, memory | ||
|
||
|
||
def create_model_meta(model_info: ModelInfo) -> ModelMeta | None: | ||
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30) | ||
meta = metadata_load(readme_path) | ||
dim, seq, parameters, memory = None, None, None, None | ||
try: | ||
dim, seq, parameters, memory = get_dim_seq_size(model_info) | ||
except Exception as e: | ||
logger.error(f"Error getting model parameters for {model_info.id}, {e}") | ||
|
||
release_date = str(model_info.created_at.date()) if model_info.created_at else "" | ||
library = [library_mapping[model_info.library_name]] if model_info.library_name in library_mapping else [] | ||
languages = meta.get("language", []) | ||
if not isinstance(languages, list) and isinstance(languages, str): | ||
languages = [languages] | ||
# yaml transforms norwegian `no` to False | ||
for i in range(len(languages)): | ||
if languages[i] is False: | ||
languages[i] = "no" | ||
|
||
model_meta = ModelMeta( | ||
name=model_info.id, | ||
revision=model_info.sha, | ||
release_date=release_date, | ||
open_weights=True, | ||
framework=library, | ||
license=meta.get("license", None), | ||
embed_dim=dim, | ||
max_tokens=seq, | ||
n_parameters=parameters, | ||
languages=languages, | ||
) | ||
return model_meta | ||
|
||
|
||
def parse_readme(model_info: ModelInfo) -> dict[str, dict[str, Any]] | None: | ||
model_id = model_info.id | ||
try: | ||
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30) | ||
except Exception: | ||
logger.warning(f"ERROR: Could not fetch metadata for {model_id}, trying again") | ||
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=30) | ||
meta = metadata_load(readme_path) | ||
if "model-index" not in meta: | ||
logger.info(f"Could not find model-index in {model_id}") | ||
return | ||
model_index = meta["model-index"][0] | ||
model_name_from_readme = model_index.get("name", None) | ||
orgs = ["Alibaba-NLP", "HIT-TMG", "McGill-NLP", "Snowflake", "facebook", "jinaai", "nomic-ai"] | ||
is_org = any([model_id.startswith(org) for org in orgs]) | ||
# There a lot of reuploads with tunes, quantization, etc. We only want the original model | ||
# to prevent this most of the time we can check if the model name from the readme is the same as the model id | ||
# but some orgs have a different naming in their readme | ||
if model_name_from_readme and not model_info.id.endswith(model_name_from_readme) and not is_org: | ||
logger.warning(f"Model name mismatch: {model_info.id} vs {model_name_from_readme}") | ||
return | ||
results = model_index.get("results", []) | ||
model_results = {} | ||
for result in results: | ||
dataset = result["dataset"] | ||
dataset_type = dataset["type"] # type is repo of the dataset | ||
if dataset_type not in model_results: | ||
output_dict = { | ||
"dataset_revision": dataset.get("revision", ""), | ||
"task_name": simplify_dataset_name(dataset["name"]), | ||
"evaluation_time": None, | ||
"mteb_version": None, | ||
"scores": {}, | ||
} | ||
else: | ||
output_dict = model_results[dataset_type] | ||
|
||
try: | ||
mteb_task = get_task(output_dict["task_name"]) | ||
except Exception: | ||
logger.warning(f"Error getting task for {model_id} {output_dict['task_name']}") | ||
continue | ||
|
||
mteb_task_metadata = mteb_task.metadata | ||
mteb_task_eval_languages = mteb_task_metadata.eval_langs | ||
|
||
scores_dict = output_dict["scores"] | ||
current_split = dataset["split"] | ||
current_config = dataset.get("config", "") | ||
cur_split_metrics = { | ||
"hf_subset": current_config, | ||
"languages": mteb_task_eval_languages if isinstance(mteb_task_eval_languages, list) else mteb_task_eval_languages.get(current_config, ["None"]), | ||
} | ||
for metric in result["metrics"]: | ||
cur_split_metrics[metric["type"]] = metric["value"] | ||
|
||
main_score_str = "main_score" | ||
if main_score_str not in cur_split_metrics: | ||
# old sts and sum_eval have cos_sim_pearson, but in model_meta cosine_spearman is main_score | ||
for old_metric, new_metric in zip(["cos_sim_pearson", "cos_sim_spearman"], ["cosine_pearson", "cosine_spearman"]): | ||
if old_metric in cur_split_metrics: | ||
cur_split_metrics[new_metric] = cur_split_metrics[old_metric] | ||
|
||
if mteb_task.metadata.main_score not in cur_split_metrics: | ||
logger.warning(f"Could not find main score for {model_id} {output_dict['task_name']}, mteb task {mteb_task.metadata.name}. Main score: {mteb_task.metadata.main_score}. Metrics: {cur_split_metrics}, result {result['metrics']}") | ||
continue | ||
|
||
cur_split_metrics[main_score_str] = cur_split_metrics.get(mteb_task.metadata.main_score, None) | ||
split_metrics = scores_dict.get(current_split, []) | ||
split_metrics.append(cur_split_metrics) | ||
scores_dict[current_split] = split_metrics | ||
model_results[dataset_type] = output_dict | ||
return model_results | ||
|
||
|
||
def get_mteb_data() -> None: | ||
models = sorted(list(API.list_models(filter="mteb", full=True)), key=lambda x: x.id) | ||
# models = [model for model in models if model.id == "intfloat/multilingual-e5-large"] | ||
for i, model_info in enumerate(models, start=1): | ||
logger.info(f"[{i}/{len(models)}] Processing {model_info.id}") | ||
model_path = get_model_dir(model_info.id) | ||
if (model_path / "model_meta.json").exists() and len(list(model_path.glob("*.json"))) > 1: | ||
logger.info(f"Model meta already exists for {model_info.id}") | ||
continue | ||
if model_info.id.lower().endswith("gguf"): | ||
logger.info(f"Skipping {model_info.id} GGUF model") | ||
continue | ||
|
||
spam_users = ["ILKT", "fine-tuned", "mlx-community"] | ||
is_spam = False | ||
for spam_user in spam_users: | ||
if model_info.id.startswith(spam_user): | ||
logger.info(f"Skipping {model_info.id}") | ||
is_spam = True | ||
continue | ||
if is_spam: | ||
continue | ||
model_meta = create_model_meta(model_info) | ||
model_results = parse_readme(model_info) | ||
|
||
if not model_meta or not model_results: | ||
logger.warning(f"Could not get model meta or results for {model_info.id}") | ||
continue | ||
|
||
if not model_path.exists(): | ||
model_path.mkdir(parents=True, exist_ok=True) | ||
|
||
model_meta_path = model_path / "model_meta.json" | ||
with model_meta_path.open("w") as f: | ||
json.dump(model_meta.model_dump(), f, indent=4) | ||
|
||
for model_result in model_results: | ||
task_name = model_results[model_result]["task_name"] | ||
result_file = model_path / f"{task_name}.json" | ||
with result_file.open("w") as f: | ||
json.dump(model_results[model_result], f, indent=4) | ||
|
||
|
||
if __name__ == "__main__": | ||
logging.basicConfig(level=logging.INFO) | ||
get_mteb_data() |
Oops, something went wrong.