Skip to content

enriquedlh97/DogBreedClassifier

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DogBreedClassifier

Model used for the final project of TI2022 - Dog Breed classifier app for local Veterinary

A model for classifying 120 Dog Breeds built using the EfficientNet-B3 feature vector pre-trained on Imagenet (ILSVRC-2012-CLS) and fine-tuned for the task at hand. The model achieves an overall accuracy of 86.7%

Getting started 🚀

To get a working environment there are two possible options.

  1. Create a conda environment with the listed pre-requisites
  2. Create a conda environment from the .yml file

Pre-requisites 📋

Software and dependencies needed

pytorch-1.7.0
tqdm-4.54.1
torchvision-0.8.1
numpy-1.19.2

Installation 🔧

To get started make sure you either have the listed pre-requisites or set up the anaconda environment from the .yml file.

conda env create -f environment.yml

Make sure you activate the environment.

conda activate DogNet

And verify that it was properly installed.

conda env list

Data

The dataset used to train the model was the Stanford Dogs Dataset which contains 20,580 images with a total of 120 dog breeds.

Acknowledgments 🎁

Special thanks to Aladding Persson aladdinpersson for his tutorial on Building a Dog Breed Identifier App from scratch - DogNet

About

Final project TI2022 - Dog Breed classifier model.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published