Skip to content

ci: execution and evaluation #5

ci: execution and evaluation

ci: execution and evaluation #5

name: Execute algorithm and evaluate metrics
on:
push:
branches: [ "main" ]
paths:
- 'algorithms/*.yaml'
- '.github/workflows/algorithm-evaluation.yml'
pull_request:
branches: [ "main" ]
paths:
- 'algorithms/*.yaml'
- '.github/workflows/algorithm-evaluation.yml'
jobs:
execute:
runs-on: ubuntu-latest
steps:
- name: Find updated algorithm
id: find-algorithm
uses: tj-actions/changed-files@v44
with:
files: algorithms/**.yaml
- name: Execute algorithm container
run: |
# iterate over all datasets in S3
for recording in $(aws s3api list-objects --bucket ${AWS_BUCKET} --prefix datasets --output text --query 'Contents[].[Key]' | grep '.*edf'); do
# save each recording (dataset slice) to a temp file
aws s3 cp s3://${AWS_BUCKET}/${recording} ./data/tmp.edf
# Run inference on recording for every updated algorithm
for algo in ${{ steps.find-algorithm.outputs.all_changed_files }}; do
IMAGE=$(grep '^image: ' $algo | sed 's/^image: \+//' | tr -d \'\")
ALGO_NAME=$(echo "$IMAGE" | iconv -t ascii//TRANSLIT | sed -r s/[^a-zA-Z0-9]+/-/g | sed -r s/^-+\|-+$//g | tr A-Z a-z)
mkdir -p ./predictions
chmod -R 777 ./predictions/
docker run \
-e INPUT=tmp.edf
-e OUTPUT=tmp.tsv
-v ./predictions:/output:rw \
-v ./data:/data:ro \
"${IMAGE}"
# Upload predictions to S3
subpath=${recording#*/}
prediction=${subpath%_eeg.edf}_events.tsv
aws s3 cp \
./predictions/tmp.tsv \
"s3://${AWS_BUCKET}/submissions/${ALGO_NAME}/${prediction}"
rm ./data/tmp.edf ./predictions/tmp.tsv
done
done
env:
AWS_ACCESS_KEY_ID: ${{ secrets.AWS_ACCESS_KEY }}
AWS_SECRET_ACCESS_KEY: ${{ secrets.AWS_SECRET_KEY }}
AWS_DEFAULT_REGION: ${{ secrets.AWS_REGION }}
AWS_BUCKET: ${{secrets.AWS_BUCKET }}
evaluate:
runs-on: ubuntu-latest
needs: [execute]
container:
image: ghcr.io/${{ github.repository }}-evaluator:main
credentials:
username: ${{ github.actor }}
password: ${{ secrets.github_token }}
steps:
- name: Evaluate algorithm predictions
run: python __main__.py