Skip to content
This repository has been archived by the owner on Jan 23, 2024. It is now read-only.
/ deeplab_ros Public archive

ROS Wrapper for DeepLab: Deep Labelling for Semantic Image Segmentation

Notifications You must be signed in to change notification settings

ethz-asl/deeplab_ros

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ROS Wrapper for DeepLab

This is a package for using DeepLab models with ROS. DeepLab is a state-of-the-art deep learning architecture for semantic image segmentation, where the goal is to assign semantic labels (e.g., person, dog, cat and so on) to every pixel in the input image. For more information about DeepLab, please visit this link.

Code for running inference is based on the following Colab notebook.

Citing

If you use the code for your research, please cite this work as:

@misc{grinvald2018deeplabros,  
  author={Margarita Grinvald},
  title={ROS Wrapper for DeepLab},
  year={2018}
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ethz-asl/deeplab_ros}},
}

Getting started

Clone this repository to the src folder of your catkin workspace, build your workspace and source it.

cd <catkin_ws>/src
git clone [email protected]:ethz-asl/deeplab_ros.git
catkin build
source <catkin_ws>/devel/setup.bash

Example usage

An example launch file is included processing a sequence from the Freiburg RGB-D SLAM Dataset.

cd <catkin_ws>/src/deeplab_ros
chmod +x scripts/download_freiburg_rgbd_example_bag.sh 
scripts/download_freiburg_rgbd_example_bag.sh
roslaunch deeplab_ros freiburg.launch

ROS node

Parameters:

  • ~rgb_input [string]

    Topic name of the input RGB stream.

    Default: "/camera/rgb/image_color"

  • ~model [string]

    Name of the backbone network used for inference. List of available models: {"mobilenetv2_coco_voctrainaug", "mobilenetv2_coco_voctrainval", "xception_coco_voctrainaug", "xception_coco_voctrainval"}. If the specified model file doesn't exist, the node automatically downloads the file.

    Default: "mobilenetv2_coco_voctrainaug"

  • ~visualize [bool]

    If true, the segmentation result overlaid on top of the input RGB image is published to the ~segmentation_viz topic.

    Default: true

Topics subscribed:

  • topic name specified by parameter ~rgb_input (default: /camera/rgb/image_color) [sensor_mgs/Image]

    Input RGB image to be processed.

Topics published:

  • ~segmentation [sensor_mgs/Image]

    Segmentation result.

  • ~segmentation_viz [sensor_mgs/Image]

    Visualization-friendly segmentation result color coded with the PASCAL VOC 2012 color map overlaid on top of the input RGB image.

About

ROS Wrapper for DeepLab: Deep Labelling for Semantic Image Segmentation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published