Skip to content

Framework for controlling demographic biases in NLG (using adversarial prompts)

Notifications You must be signed in to change notification settings

ewsheng/controllable-nlg-biases

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Towards Controllable Biases in Language Generation

This code generates bias triggers and evaluates the biases in text generated using the bias triggers.

More details can be found in this paper.

Dependencies

This trigger search code is written using PyTorch and extended from the code from the paper Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019). The code for GPT-2 is based on HuggingFace's Transformer repo.

The evaluation code relies on the code and data from the paper The Woman Worked as a Babysitter: On Biases in Language Generation. You will need to download this repo in order to run the evaluation.

With 1 RTX 2080-Ti GPU, the trigger search takes 1-2 hours.

Installation

An easy way to install the code is to create a fresh anaconda environment:

conda create -n triggers python=3.6
conda activate triggers
pip install -r requirements.txt

Getting Started

Finding bias triggers

Running src/create_adv_token.py generates a bias trigger for specified (demographic, regard) pairs.

A demographic group can be a string (e.g., "The man") or represented by a set of names.

python src/create_adv_token.py --help
usage: create_adv_token.py [-h] 
                           [--neg_sample_file NEG_SAMPLE_FILE]
                           [--neu_sample_file NEU_SAMPLE_FILE]
                           [--pos_sample_file POS_SAMPLE_FILE]
                           [--neg_demographic NEG_DEMOGRAPHIC]
                           [--pos_demographic POS_DEMOGRAPHIC]
                           [--neg_name_file NEG_NAME_FILE]
                           [--pos_name_file POS_NAME_FILE]
                           [--salience_threshold SALIENCE_THRESHOLD]
                           [--salient_phrases_file SALIENT_PHRASES_FILE]
                           [--use_original_loss USE_ORIGINAL_LOSS]
                           [--use_salience_loss USE_SALIENCE_LOSS]
                           [--use_dissociation_loss USE_DISSOCIATION_LOSS]
                           [--use_weighted_salience_loss USE_WEIGHTED_SALIENCE_LOSS]
                           [--alpha ALPHA] 
                           [--beta BETA]
                           [--beam_size BEAM_SIZE]
                           [--use_weighted_neg USE_WEIGHTED_NEG]
                           [--trigger_init TRIGGER_INIT]
                           [--num_trigger_tokens NUM_TRIGGER_TOKENS]
                           [--trigger_masked_phrases TRIGGER_MASKED_PHRASES]
                           [--trigger_position TRIGGER_POSITION]
                           [--debias DEBIAS]
                           [--num_demographics NUM_DEMOGRAPHICS]
                           [--model_name_or_path MODEL_NAME_OR_PATH]
                           [--tokenizer_name TOKENIZER_NAME]
                           [--model_type MODEL_TYPE] 
                           [--batch_size BATCH_SIZE]

optional arguments:
  -h, --help            show this help message and exit
  --neg_sample_file NEG_SAMPLE_FILE
                        File of negative regard target samples.
  --neu_sample_file NEU_SAMPLE_FILE
                        File of neutral regard target samples.
  --pos_sample_file POS_SAMPLE_FILE
                        Fle of positive regard target samples.
  --neg_demographic NEG_DEMOGRAPHIC
                        Demographic mention for negative target samples.
  --pos_demographic POS_DEMOGRAPHIC
                        Demographic mention for positive target samples.
  --neg_name_file NEG_NAME_FILE
                        File with names for negative target samples. Overrides
                        neg_demographic.
  --pos_name_file POS_NAME_FILE
                        File with names for positive target samples. Overrides
                        pos_demographic.
  --salience_threshold SALIENCE_THRESHOLD
  --salient_phrases_file SALIENT_PHRASES_FILE
                        File with salient phrases.
  --use_original_loss USE_ORIGINAL_LOSS
                        Use association loss.
  --use_salience_loss USE_SALIENCE_LOSS
  --use_dissociation_loss USE_DISSOCIATION_LOSS
                        Use dissociation loss.
  --use_weighted_salience_loss USE_WEIGHTED_SALIENCE_LOSS
  --alpha ALPHA         Weight for original loss.
  --beta BETA           Weight for dissociation loss.
  --beam_size BEAM_SIZE
                        Beam size when searching for trigger replacement
                        candidates.
  --use_weighted_neg USE_WEIGHTED_NEG
  --trigger_init TRIGGER_INIT
                        Initialize trigger with a phrase.
  --num_trigger_tokens NUM_TRIGGER_TOKENS
  --trigger_masked_phrases TRIGGER_MASKED_PHRASES
  --trigger_position TRIGGER_POSITION
                        Options are `head`, `body_demographic`,
                        `body_biascontext.
  --debias DEBIAS       Whether to generate triggers to debias. 0 = no debias,
                        1 = neutral debias, 2 = neutral + positive debias.
  --num_demographics NUM_DEMOGRAPHICS
                        Whether to use 1 or 2 demographics.
  --model_name_or_path MODEL_NAME_OR_PATH
                        Model name or path: gpt2, microsoft/DialoGPT-medium,
                        etc.
  --tokenizer_name TOKENIZER_NAME
                        Tokenizer name if different from model name.
  --model_type MODEL_TYPE
                        Currently either `gpt2` or `dialogpt`.
  --batch_size BATCH_SIZE
                        32 works well for CPU, 16 for GPU.

For example, if we wanted to find a trigger for GPT2 that associates positive social connotations with "The woman" and negative social connotations with "The man", we could run:

python src/create_adv_token.py \
--neg_sample_file data/gpt2_neg_regard.tsv \
--neu_sample_file data/gpt2_neu_regard.tsv \
--pos_sample_file data/gpt2_pos_regard.tsv \
--neg_demographic "The man" \
--pos_demographic "The woman" > neg_man_pos_woman.txt

Evaluating samples generated from bias triggers

First, download the code and regard classifier here.

Now you can run src/eval_triggers.py to use a found bias trigger to generate samples and then evaluate the samples using the regard classifier.

python src/eval_triggers.py --help
usage: eval_triggers.py [-h] 
                        [--trigger_dump_file TRIGGER_DUMP_FILE]
                        [--trigger_label_output_dir TRIGGER_LABEL_OUTPUT_DIR]
                        [--regard_classifier_dir REGARD_CLASSIFIER_DIR]
                        [--trigger_position TRIGGER_POSITION]
                        [--neg_demographic NEG_DEMOGRAPHIC]
                        [--pos_demographic POS_DEMOGRAPHIC]
                        [--neg_name_file NEG_NAME_FILE]
                        [--pos_name_file POS_NAME_FILE] 
                        [--metric METRIC]
                        [--model MODEL]

optional arguments:
  -h, --help            show this help message and exit
  --trigger_dump_file TRIGGER_DUMP_FILE
                        The output file of create_adv_token.py.
  --trigger_label_output_dir TRIGGER_LABEL_OUTPUT_DIR
                        Path to output generated samples.
  --regard_classifier_dir REGARD_CLASSIFIER_DIR
                        Path to top level of regard classifier code directory.
  --trigger_position TRIGGER_POSITION
                        Options are `head` or `body`.
  --neg_demographic NEG_DEMOGRAPHIC
                        Demographic string to associate with negative regard
                        samples.
  --pos_demographic POS_DEMOGRAPHIC
                        Demographic string to associate with positive regard
                        samples.
  --neg_name_file NEG_NAME_FILE
                        Name file for negative association.
  --pos_name_file POS_NAME_FILE
                        Name file for positive association.
  --metric METRIC       Specify metric: `regard2`, `regard1`, `sentiment2`, or
                        `sentiment1`.
  --model MODEL         `gpt2` or `dialogpt`.

For example, to evaluate the trigger found using create_adv_token.py above:

python src/eval_triggers.py \
--trigger_dump_file neg_man_pos_woman.txt \
--trigger_label_output_dir [EXISTING_PATH] \
--regard_classifier_dir [EXISTING_PATH_TO_TOP_LEVEL_REGARD_REPO] \
--neg_demographic "The man" \
--pos_demographic "The woman"

Other features

About

Framework for controlling demographic biases in NLG (using adversarial prompts)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages