Skip to content

Commit

Permalink
add bm25 module (langchain-ai#7779)
Browse files Browse the repository at this point in the history
- Description: Add a BM25 Retriever that do not need Elastic search
- Dependencies: rank_bm25(if it is not installed it will be install by
using pip, just like TFIDFRetriever do)
  - Tag maintainer: @rlancemartin, @eyurtsev
  - Twitter handle: DayuanJian21687

---------

Co-authored-by: Bagatur <[email protected]>
  • Loading branch information
DayuanJiang and baskaryan authored Jul 17, 2023
1 parent fa0a9e5 commit ee40d37
Show file tree
Hide file tree
Showing 6 changed files with 323 additions and 2 deletions.
175 changes: 175 additions & 0 deletions docs/extras/modules/data_connection/retrievers/integrations/bm25.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "ab66dd43",
"metadata": {},
"source": [
"# BM25\n",
"\n",
"[BM25](https://en.wikipedia.org/wiki/Okapi_BM25) also known as the Okapi BM25, is a ranking function used in information retrieval systems to estimate the relevance of documents to a given search query.\n",
"\n",
"This notebook goes over how to use a retriever that under the hood uses BM25 using [`rank_bm25`](https://github.com/dorianbrown/rank_bm25) package.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a801b57c",
"metadata": {},
"outputs": [],
"source": [
"# !pip install rank_bm25"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "393ac030",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/workspaces/langchain/.venv/lib/python3.10/site-packages/deeplake/util/check_latest_version.py:32: UserWarning: A newer version of deeplake (3.6.10) is available. It's recommended that you update to the latest version using `pip install -U deeplake`.\n",
" warnings.warn(\n"
]
}
],
"source": [
"from langchain.retrievers import BM25Retriever"
]
},
{
"cell_type": "markdown",
"id": "aaf80e7f",
"metadata": {},
"source": [
"## Create New Retriever with Texts"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "98b1c017",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"retriever = BM25Retriever.from_texts([\"foo\", \"bar\", \"world\", \"hello\", \"foo bar\"])"
]
},
{
"cell_type": "markdown",
"id": "c016b266",
"metadata": {},
"source": [
"## Create a New Retriever with Documents\n",
"\n",
"You can now create a new retriever with the documents you created."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "53af4f00",
"metadata": {},
"outputs": [],
"source": [
"from langchain.schema import Document\n",
"\n",
"retriever = BM25Retriever.from_documents(\n",
" [\n",
" Document(page_content=\"foo\"),\n",
" Document(page_content=\"bar\"),\n",
" Document(page_content=\"world\"),\n",
" Document(page_content=\"hello\"),\n",
" Document(page_content=\"foo bar\"),\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "08437fa2",
"metadata": {},
"source": [
"## Use Retriever\n",
"\n",
"We can now use the retriever!"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c0455218",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"result = retriever.get_relevant_documents(\"foo\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7dfa5c29",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"text/plain": [
"[Document(page_content='foo', metadata={}),\n",
" Document(page_content='foo bar', metadata={}),\n",
" Document(page_content='hello', metadata={}),\n",
" Document(page_content='world', metadata={})]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "997aaa8d",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
2 changes: 2 additions & 0 deletions langchain/retrievers/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from langchain.retrievers.arxiv import ArxivRetriever
from langchain.retrievers.azure_cognitive_search import AzureCognitiveSearchRetriever
from langchain.retrievers.bm25 import BM25Retriever
from langchain.retrievers.chaindesk import ChaindeskRetriever
from langchain.retrievers.chatgpt_plugin_retriever import ChatGPTPluginRetriever
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever
Expand Down Expand Up @@ -51,6 +52,7 @@
"SVMRetriever",
"SelfQueryRetriever",
"TFIDFRetriever",
"BM25Retriever",
"TimeWeightedVectorStoreRetriever",
"VespaRetriever",
"WeaviateHybridSearchRetriever",
Expand Down
86 changes: 86 additions & 0 deletions langchain/retrievers/bm25.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
"""
BM25 Retriever without elastic search
"""


from __future__ import annotations

from typing import Any, Callable, Dict, Iterable, List, Optional

from langchain.callbacks.manager import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain.schema import BaseRetriever, Document


def default_preprocessing_func(text: str) -> List[str]:
return text.split()


class BM25Retriever(BaseRetriever):
vectorizer: Any
docs: List[Document]
k: int = 4
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func

class Config:
"""Configuration for this pydantic object."""

arbitrary_types_allowed = True

@classmethod
def from_texts(
cls,
texts: Iterable[str],
metadatas: Optional[Iterable[dict]] = None,
bm25_params: Optional[Dict[str, Any]] = None,
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
**kwargs: Any,
) -> BM25Retriever:
try:
from rank_bm25 import BM25Okapi
except ImportError:
raise ImportError(
"Could not import rank_bm25, please install with `pip install "
"rank_bm25`."
)

texts_processed = [preprocess_func(t) for t in texts]
bm25_params = bm25_params or {}
vectorizer = BM25Okapi(texts_processed, **bm25_params)
metadatas = metadatas or ({} for _ in texts)
docs = [Document(page_content=t, metadata=m) for t, m in zip(texts, metadatas)]
return cls(
vectorizer=vectorizer, docs=docs, preprocess_func=preprocess_func, **kwargs
)

@classmethod
def from_documents(
cls,
documents: Iterable[Document],
*,
bm25_params: Optional[Dict[str, Any]] = None,
preprocess_func: Callable[[str], List[str]] = default_preprocessing_func,
**kwargs: Any,
) -> BM25Retriever:
texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents))
return cls.from_texts(
texts=texts,
bm25_params=bm25_params,
metadatas=metadatas,
preprocess_func=preprocess_func,
**kwargs,
)

def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
processed_query = self.preprocess_func(query)
return_docs = self.vectorizer.get_top_n(processed_query, self.docs, n=self.k)
return return_docs

async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
raise NotImplementedError
26 changes: 24 additions & 2 deletions poetry.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 2 additions & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,7 @@ rdflib = {version = "^6.3.2", optional = true}
sympy = {version = "^1.12", optional = true}
rapidfuzz = {version = "^3.1.1", optional = true}
langsmith = "^0.0.7"
rank-bm25 = {version = "^0.2.2", optional = true}

[tool.poetry.group.docs.dependencies]
autodoc_pydantic = "^1.8.0"
Expand Down Expand Up @@ -361,6 +362,7 @@ extended_testing = [
"openai",
"sympy",
"rapidfuzz",
"rank_bm25",
]

[[tool.poetry.source]]
Expand Down
34 changes: 34 additions & 0 deletions tests/unit_tests/retrievers/test_bm25.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import pytest

from langchain.retrievers.bm25 import BM25Retriever
from langchain.schema import Document


@pytest.mark.requires("rank_bm25")
def test_from_texts() -> None:
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
bm25_retriever = BM25Retriever.from_texts(texts=input_texts)
assert len(bm25_retriever.docs) == 3
assert bm25_retriever.vectorizer.doc_len == [4, 5, 4]


@pytest.mark.requires("rank_bm25")
def test_from_texts_with_bm25_params() -> None:
input_texts = ["I have a pen.", "Do you have a pen?", "I have a bag."]
bm25_retriever = BM25Retriever.from_texts(
texts=input_texts, bm25_params={"epsilon": 10}
)
# should count only multiple words (have, pan)
assert bm25_retriever.vectorizer.epsilon == 10


@pytest.mark.requires("rank_bm25")
def test_from_documents() -> None:
input_docs = [
Document(page_content="I have a pen."),
Document(page_content="Do you have a pen?"),
Document(page_content="I have a bag."),
]
bm25_retriever = BM25Retriever.from_documents(documents=input_docs)
assert len(bm25_retriever.docs) == 3
assert bm25_retriever.vectorizer.doc_len == [4, 5, 4]

0 comments on commit ee40d37

Please sign in to comment.