-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
192 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
import copy | ||
import os | ||
|
||
import torch | ||
import torch.utils.data | ||
import torchvision | ||
from PIL import Image | ||
from pycocotools import mask as coco_mask | ||
from .seg_transforms import Compose | ||
|
||
|
||
class FilterAndRemapCocoCategories: | ||
def __init__(self, categories, remap=True): | ||
self.categories = categories | ||
self.remap = remap | ||
|
||
def __call__(self, image, anno): | ||
anno = [obj for obj in anno if obj["category_id"] in self.categories] | ||
if not self.remap: | ||
return image, anno | ||
anno = copy.deepcopy(anno) | ||
for obj in anno: | ||
obj["category_id"] = self.categories.index(obj["category_id"]) | ||
return image, anno | ||
|
||
def __repr__(self) -> str: | ||
return self.__class__.__name__ + f'()' | ||
|
||
|
||
def convert_coco_poly_to_mask(segmentations, height, width): | ||
masks = [] | ||
for polygons in segmentations: | ||
rles = coco_mask.frPyObjects(polygons, height, width) | ||
mask = coco_mask.decode(rles) | ||
if len(mask.shape) < 3: | ||
mask = mask[..., None] | ||
mask = torch.as_tensor(mask, dtype=torch.uint8) | ||
mask = mask.any(dim=2) | ||
masks.append(mask) | ||
if masks: | ||
masks = torch.stack(masks, dim=0) | ||
else: | ||
masks = torch.zeros((0, height, width), dtype=torch.uint8) | ||
return masks | ||
|
||
|
||
class ConvertCocoPolysToMask: | ||
def __call__(self, image, anno): | ||
w, h = image.size | ||
segmentations = [obj["segmentation"] for obj in anno] | ||
cats = [obj["category_id"] for obj in anno] | ||
if segmentations: | ||
masks = convert_coco_poly_to_mask(segmentations, h, w) | ||
cats = torch.as_tensor(cats, dtype=masks.dtype) | ||
# merge all instance masks into a single segmentation map | ||
# with its corresponding categories | ||
target, _ = (masks * cats[:, None, None]).max(dim=0) | ||
# discard overlapping instances | ||
target[masks.sum(0) > 1] = 255 | ||
else: | ||
target = torch.zeros((h, w), dtype=torch.uint8) | ||
target = Image.fromarray(target.numpy()) | ||
return image, target | ||
|
||
def __repr__(self) -> str: | ||
return self.__class__.__name__ + f'()' | ||
|
||
|
||
def _coco_remove_images_without_annotations(dataset, cat_list=None): | ||
def _has_valid_annotation(anno): | ||
# if it's empty, there is no annotation | ||
if len(anno) == 0: | ||
return False | ||
# if more than 1k pixels occupied in the image | ||
return sum(obj["area"] for obj in anno) > 1000 | ||
|
||
assert isinstance(dataset, torchvision.datasets.CocoDetection) | ||
ids = [] | ||
for ds_idx, img_id in enumerate(dataset.ids): | ||
ann_ids = dataset.coco.getAnnIds(imgIds=img_id, iscrowd=None) | ||
anno = dataset.coco.loadAnns(ann_ids) | ||
if cat_list: | ||
anno = [obj for obj in anno if obj["category_id"] in cat_list] | ||
if _has_valid_annotation(anno): | ||
ids.append(ds_idx) | ||
|
||
dataset = torch.utils.data.Subset(dataset, ids) | ||
return dataset | ||
|
||
|
||
def get_coco(root, image_set, transforms): | ||
PATHS = { | ||
"train": ("train2017", os.path.join("annotations", "instances_train2017.json")), | ||
"val": ("val2017", os.path.join("annotations", "instances_val2017.json")), | ||
# "train": ("val2017", os.path.join("annotations", "instances_val2017.json")) | ||
} | ||
CAT_LIST = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72] | ||
|
||
transforms = Compose([FilterAndRemapCocoCategories(CAT_LIST, remap=True), ConvertCocoPolysToMask(), transforms]) | ||
|
||
img_folder, ann_file = PATHS[image_set] | ||
img_folder = os.path.join(root, img_folder) | ||
ann_file = os.path.join(root, ann_file) | ||
|
||
dataset = torchvision.datasets.CocoDetection(img_folder, ann_file, transforms=transforms) | ||
|
||
if image_set == "train": | ||
dataset = _coco_remove_images_without_annotations(dataset, CAT_LIST) | ||
|
||
return dataset |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
__version__ = '0.0.18' | ||
__version__ = '0.0.19' |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters