-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
226 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
"""https://github.com/huawei-noah/CV-Backbones/blob/master/ghostnet_pytorch/ghostnet.py""" | ||
import os | ||
import math | ||
import torch | ||
import torch.nn as nn | ||
from .core import blocks, export, make_divisible | ||
from typing import Any, List | ||
|
||
|
||
class GhostModule(nn.Module): | ||
def __init__( | ||
self, | ||
inp, | ||
oup, | ||
kernel_size=1, | ||
ratio=2, | ||
dw_size=3, | ||
stride=1, | ||
relu=True | ||
): | ||
super().__init__() | ||
super(GhostModule, self).__init__() | ||
self.oup = oup | ||
init_channels = math.ceil(oup / ratio) | ||
new_channels = init_channels * (ratio - 1) | ||
|
||
self.primary_conv = nn.Sequential( | ||
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False), | ||
nn.BatchNorm2d(init_channels), | ||
nn.ReLU(inplace=True) if relu else nn.Sequential(), | ||
) | ||
|
||
self.cheap_operation = nn.Sequential( | ||
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False), | ||
nn.BatchNorm2d(new_channels), | ||
nn.ReLU(inplace=True) if relu else nn.Sequential(), | ||
) | ||
|
||
def forward(self, x): | ||
x1 = self.primary_conv(x) | ||
x2 = self.cheap_operation(x1) | ||
out = torch.cat([x1,x2], dim=1) | ||
return out[:,:self.oup,:,:] | ||
|
||
|
||
class GhostBottleneck(nn.Module): | ||
""" Ghost bottleneck w/ optional SE""" | ||
|
||
def __init__( | ||
self, | ||
in_chs, | ||
mid_chs, | ||
out_chs, | ||
dw_kernel_size=3, | ||
stride=1, | ||
act_layer=nn.ReLU, | ||
se_ratio=0. | ||
): | ||
super(GhostBottleneck, self).__init__() | ||
has_se = se_ratio is not None and se_ratio > 0. | ||
self.stride = stride | ||
|
||
# Point-wise expansion | ||
self.ghost1 = GhostModule(in_chs, mid_chs, relu=True) | ||
|
||
# Depth-wise convolution | ||
if self.stride > 1: | ||
self.conv_dw = nn.Conv2d( | ||
mid_chs, mid_chs, dw_kernel_size, stride=stride, | ||
padding=(dw_kernel_size-1)//2, groups=mid_chs, bias=False) | ||
self.bn_dw = nn.BatchNorm2d(mid_chs) | ||
|
||
# Squeeze-and-excitation | ||
if has_se: | ||
self.se = blocks.SEBlock(mid_chs, ratio=se_ratio) | ||
else: | ||
self.se = None | ||
|
||
# Point-wise linear projection | ||
self.ghost2 = GhostModule(mid_chs, out_chs, relu=False) | ||
|
||
# shortcut | ||
if (in_chs == out_chs and self.stride == 1): | ||
self.shortcut = nn.Sequential() | ||
else: | ||
self.shortcut = nn.Sequential( | ||
nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride, | ||
padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False), | ||
nn.BatchNorm2d(in_chs), | ||
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False), | ||
nn.BatchNorm2d(out_chs), | ||
) | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
# 1st ghost bottleneck | ||
x = self.ghost1(x) | ||
|
||
# Depth-wise convolution | ||
if self.stride > 1: | ||
x = self.conv_dw(x) | ||
x = self.bn_dw(x) | ||
|
||
# Squeeze-and-excitation | ||
if self.se is not None: | ||
x = self.se(x) | ||
|
||
# 2nd ghost bottleneck | ||
x = self.ghost2(x) | ||
|
||
x += self.shortcut(residual) | ||
return x | ||
|
||
|
||
@export | ||
class GhostNet(nn.Module): | ||
def __init__( | ||
self, | ||
in_channels: int = 3, | ||
num_classes: int = 1000, | ||
multiplier: float = 1.0, | ||
dropout_rate: float = 0.2, | ||
cfgs: List[list] = [], | ||
thumbnail: bool = False | ||
) -> None: | ||
super().__init__() | ||
|
||
FRONT_S = 1 if thumbnail else 2 | ||
|
||
inp = make_divisible(16 * multiplier, 4) | ||
_features = [blocks.Conv2dBlock(in_channels, inp, stride=FRONT_S)] | ||
|
||
for cfg in cfgs: | ||
_layers = [] | ||
for k, t, c, se_ratio, s in cfg: | ||
oup = make_divisible(c * multiplier, 4) | ||
_layers.append(GhostBottleneck(inp, make_divisible(t * multiplier, 4), oup, k, s, se_ratio=se_ratio)) | ||
inp = oup | ||
|
||
_features.append(blocks.Stage(*_layers)) | ||
|
||
oup = make_divisible(t * multiplier, 4) | ||
_features.append(blocks.Conv2d1x1Block(inp, oup)) | ||
|
||
self.features = nn.Sequential(*_features) | ||
|
||
self.avg = nn.AdaptiveAvgPool2d((1, 1)) | ||
self.classifier = nn.Sequential( | ||
nn.Linear(oup, 1280), | ||
nn.ReLU(inplace=True), | ||
nn.Dropout(dropout_rate, inplace=True), | ||
nn.Linear(1280, num_classes) | ||
) | ||
|
||
def forward(self, x): | ||
x = self.features(x) | ||
x = self.avg(x) | ||
x = torch.flatten(x, 1) | ||
x = self.classifier(x) | ||
return x | ||
|
||
|
||
def _ghostnet( | ||
multiplier: float = 1.0, | ||
pretrained: bool = False, | ||
pth: str = None, | ||
progress: bool = True, | ||
**kwargs: Any | ||
): | ||
cfgs = [ | ||
# k, t, c, SE, s | ||
# stage1 | ||
[[3, 16, 16, 0, 1]], | ||
# stage2 | ||
[[3, 48, 24, 0, 2]], | ||
[[3, 72, 24, 0, 1]], | ||
# stage3 | ||
[[5, 72, 40, 0.25, 2]], | ||
[[5, 120, 40, 0.25, 1]], | ||
# stage4 | ||
[[3, 240, 80, 0, 2]], | ||
[[3, 200, 80, 0, 1], | ||
[3, 184, 80, 0, 1], | ||
[3, 184, 80, 0, 1], | ||
[3, 480, 112, 0.25, 1], | ||
[3, 672, 112, 0.25, 1] | ||
], | ||
# stage5 | ||
[[5, 672, 160, 0.25, 2]], | ||
[[5, 960, 160, 0, 1], | ||
[5, 960, 160, 0.25, 1], | ||
[5, 960, 160, 0, 1], | ||
[5, 960, 160, 0.25, 1] | ||
] | ||
] | ||
|
||
model = GhostNet(multiplier=multiplier, cfgs=cfgs, **kwargs) | ||
|
||
if pretrained: | ||
if pth is not None: | ||
state_dict = torch.load(os.path.expanduser(pth)) | ||
else: | ||
assert 'url' in kwargs and kwargs['url'] != '', 'Invalid URL.' | ||
state_dict = torch.hub.load_state_dict_from_url( | ||
kwargs['url'], | ||
progress=progress | ||
) | ||
model.load_state_dict(state_dict) | ||
return model | ||
|
||
|
||
@export | ||
def ghostnet_x0_5(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs): | ||
return _ghostnet(0.5, pretrained, pth, progress, **kwargs) | ||
|
||
|
||
@export | ||
def ghostnet_x1_0(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs): | ||
return _ghostnet(1.0, pretrained, pth, progress, **kwargs) | ||
|
||
|
||
@export | ||
def ghostnet_x1_3(pretrained: bool = False, pth: str = None, progress: bool = True, **kwargs): | ||
return _ghostnet(1.3, pretrained, pth, progress, **kwargs) |