-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
adding microwave plugin with path integrals for computing voltage/cur…
…rent/impedance reused path integrals in smatrix plugin
- Loading branch information
1 parent
6952466
commit 2797fe6
Showing
11 changed files
with
889 additions
and
92 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
.. currentmodule:: tidy3d | ||
|
||
Microwave | ||
---------------------------- | ||
|
||
.. autosummary:: | ||
:toctree: ../_autosummary/ | ||
:template: module.rst | ||
|
||
tidy3d.plugins.microwave.AxisAlignedPathIntegral | ||
tidy3d.plugins.microwave.VoltageIntegralAxisAligned | ||
tidy3d.plugins.microwave.CurrentIntegralAxisAligned | ||
tidy3d.plugins.microwave.ImpedanceCalculator |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,305 @@ | ||
import pytest | ||
import numpy as np | ||
|
||
import tidy3d as td | ||
from tidy3d import FieldData | ||
from tidy3d.constants import ETA_0 | ||
from tidy3d.plugins.microwave import ( | ||
VoltageIntegralAxisAligned, | ||
CurrentIntegralAxisAligned, | ||
ImpedanceCalculator, | ||
) | ||
import pydantic.v1 as pydantic | ||
from tidy3d.exceptions import DataError | ||
from ..utils import run_emulated | ||
|
||
|
||
# Using similar code as "test_data/test_data_arrays.py" | ||
MON_SIZE = (2, 1, 0) | ||
FIELDS = ("Ex", "Ey", "Hx", "Hy") | ||
FSTART = 0.5e9 | ||
FSTOP = 1.5e9 | ||
F0 = (FSTART + FSTOP) / 2 | ||
FWIDTH = FSTOP - FSTART | ||
FS = np.linspace(FSTART, FSTOP, 3) | ||
FIELD_MONITOR = td.FieldMonitor( | ||
size=MON_SIZE, fields=FIELDS, name="strip_field", freqs=FS, colocate=False | ||
) | ||
STRIP_WIDTH = 1.5 | ||
STRIP_HEIGHT = 0.5 | ||
|
||
SIM_Z = td.Simulation( | ||
size=(2, 1, 1), | ||
grid_spec=td.GridSpec.uniform(dl=0.04), | ||
monitors=[ | ||
FIELD_MONITOR, | ||
td.FieldMonitor(center=(0, 0, 0), size=(1, 1, 1), freqs=FS, name="field"), | ||
td.FieldMonitor( | ||
center=(0, 0, 0), size=(1, 1, 1), freqs=FS, fields=["Ex", "Hx"], name="ExHx" | ||
), | ||
td.FieldTimeMonitor(center=(0, 0, 0), size=(1, 1, 0), colocate=False, name="field_time"), | ||
td.ModeSolverMonitor( | ||
center=(0, 0, 0), | ||
size=(1, 1, 0), | ||
freqs=FS, | ||
mode_spec=td.ModeSpec(num_modes=2), | ||
name="mode", | ||
), | ||
], | ||
sources=[ | ||
td.PointDipole( | ||
center=(0, 0, 0), | ||
polarization="Ex", | ||
source_time=td.GaussianPulse(freq0=F0, fwidth=FWIDTH), | ||
) | ||
], | ||
run_time=5e-16, | ||
) | ||
|
||
SIM_Z_DATA = run_emulated(SIM_Z) | ||
|
||
""" Generate the data arrays for testing path integral computations """ | ||
|
||
|
||
def get_xyz( | ||
monitor: td.components.monitor.MonitorType, grid_key: str | ||
) -> tuple[list[float], list[float], list[float]]: | ||
grid = SIM_Z.discretize_monitor(monitor) | ||
x, y, z = grid[grid_key].to_list | ||
return x, y, z | ||
|
||
|
||
def make_stripline_scalar_field_data_array(grid_key: str): | ||
"""Populate FIELD_MONITOR with a idealized stripline mode, where fringing fields are assumed 0.""" | ||
XS, YS, ZS = get_xyz(FIELD_MONITOR, grid_key) | ||
XGRID, YGRID = np.meshgrid(XS, YS, indexing="ij") | ||
XGRID = XGRID.reshape((len(XS), len(YS), 1, 1)) | ||
YGRID = YGRID.reshape((len(XS), len(YS), 1, 1)) | ||
values = np.zeros((len(XS), len(YS), len(ZS), len(FS))) | ||
ones = np.ones((len(XS), len(YS), len(ZS), len(FS))) | ||
XGRID = np.broadcast_to(XGRID, values.shape) | ||
YGRID = np.broadcast_to(YGRID, values.shape) | ||
|
||
# Numpy masks for quickly determining location | ||
above_in_strip = np.logical_and(YGRID >= 0, YGRID <= STRIP_HEIGHT / 2) | ||
below_in_strip = np.logical_and(YGRID < 0, YGRID >= -STRIP_HEIGHT / 2) | ||
within_strip_width = np.logical_and(XGRID >= -STRIP_WIDTH / 2, XGRID < STRIP_WIDTH / 2) | ||
above_and_within = np.logical_and(above_in_strip, within_strip_width) | ||
below_and_within = np.logical_and(below_in_strip, within_strip_width) | ||
# E field is perpendicular to strip surface and magnetic field is parallel | ||
if grid_key == "Ey": | ||
values = np.where(above_and_within, ones, values) | ||
values = np.where(below_and_within, -ones, values) | ||
elif grid_key == "Hx": | ||
values = np.where(above_and_within, -ones / ETA_0, values) | ||
values = np.where(below_and_within, ones / ETA_0, values) | ||
|
||
return td.ScalarFieldDataArray(values, coords=dict(x=XS, y=YS, z=ZS, f=FS)) | ||
|
||
|
||
def make_field_data(): | ||
return FieldData( | ||
monitor=FIELD_MONITOR, | ||
Ex=make_stripline_scalar_field_data_array("Ex"), | ||
Ey=make_stripline_scalar_field_data_array("Ey"), | ||
Hx=make_stripline_scalar_field_data_array("Hx"), | ||
Hy=make_stripline_scalar_field_data_array("Hy"), | ||
symmetry=SIM_Z.symmetry, | ||
symmetry_center=SIM_Z.center, | ||
grid_expanded=SIM_Z.discretize_monitor(FIELD_MONITOR), | ||
) | ||
|
||
|
||
@pytest.mark.parametrize("axis", [0, 1, 2]) | ||
def test_voltage_integral_axes(axis): | ||
length = 0.5 | ||
size = [0, 0, 0] | ||
size[axis] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAxisAligned( | ||
center=center, | ||
size=size, | ||
sign="+", | ||
) | ||
|
||
_ = voltage_integral.compute_voltage(SIM_Z_DATA["field"]) | ||
|
||
|
||
@pytest.mark.parametrize("axis", [0, 1, 2]) | ||
def test_current_integral_axes(axis): | ||
length = 0.5 | ||
size = [length, length, length] | ||
size[axis] = 0.0 | ||
center = [0, 0, 0] | ||
current_integral = CurrentIntegralAxisAligned( | ||
center=center, | ||
size=size, | ||
sign="+", | ||
) | ||
_ = current_integral.compute_current(SIM_Z_DATA["field"]) | ||
|
||
|
||
def test_voltage_integral_toggles(): | ||
length = 0.5 | ||
size = [0, 0, 0] | ||
size[0] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAxisAligned( | ||
center=center, | ||
size=size, | ||
extrapolate_to_endpoints=True, | ||
snap_path_to_grid=True, | ||
sign="-", | ||
) | ||
_ = voltage_integral.compute_voltage(SIM_Z_DATA["field"]) | ||
|
||
|
||
def test_current_integral_toggles(): | ||
length = 0.5 | ||
size = [length, length, length] | ||
size[0] = 0.0 | ||
center = [0, 0, 0] | ||
current_integral = CurrentIntegralAxisAligned( | ||
center=center, | ||
size=size, | ||
extrapolate_to_endpoints=True, | ||
snap_contour_to_grid=True, | ||
sign="-", | ||
) | ||
_ = current_integral.compute_current(SIM_Z_DATA["field"]) | ||
|
||
|
||
def test_voltage_missing_fields(): | ||
length = 0.5 | ||
size = [0, 0, 0] | ||
size[1] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAxisAligned( | ||
center=center, | ||
size=size, | ||
sign="+", | ||
) | ||
|
||
with pytest.raises(DataError): | ||
_ = voltage_integral.compute_voltage(SIM_Z_DATA["ExHx"]) | ||
|
||
|
||
def test_current_missing_fields(): | ||
length = 0.5 | ||
size = [length, length, length] | ||
size[0] = 0.0 | ||
center = [0, 0, 0] | ||
current_integral = CurrentIntegralAxisAligned( | ||
center=center, | ||
size=size, | ||
sign="+", | ||
) | ||
|
||
with pytest.raises(DataError): | ||
_ = current_integral.compute_current(SIM_Z_DATA["ExHx"]) | ||
|
||
|
||
def test_time_monitor_voltage_integral(): | ||
length = 0.5 | ||
size = [0, 0, 0] | ||
size[1] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAxisAligned( | ||
center=center, | ||
size=size, | ||
sign="+", | ||
) | ||
|
||
voltage_integral.compute_voltage(SIM_Z_DATA["field_time"]) | ||
|
||
|
||
def test_mode_solver_monitor_voltage_integral(): | ||
length = 0.5 | ||
size = [0, 0, 0] | ||
size[1] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAxisAligned( | ||
center=center, | ||
size=size, | ||
sign="+", | ||
) | ||
|
||
voltage_integral.compute_voltage(SIM_Z_DATA["mode"]) | ||
|
||
|
||
def test_tiny_voltage_path(): | ||
length = 0.02 | ||
size = [0, 0, 0] | ||
size[1] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAxisAligned( | ||
center=center, size=size, sign="+", extrapolate_to_endpoints=True | ||
) | ||
|
||
_ = voltage_integral.compute_voltage(SIM_Z_DATA["field"]) | ||
|
||
|
||
def test_impedance_calculator(): | ||
with pytest.raises(pydantic.ValidationError): | ||
_ = ImpedanceCalculator(voltage_integral=None, current_integral=None) | ||
|
||
|
||
def test_impedance_calculator_on_time_data(): | ||
# Setup path integrals | ||
length = 0.5 | ||
size = [0, length, 0] | ||
size[1] = length | ||
center = [0, 0, 0] | ||
voltage_integral = VoltageIntegralAxisAligned( | ||
center=center, size=size, sign="+", extrapolate_to_endpoints=True | ||
) | ||
|
||
size = [length, length, 0] | ||
current_integral = CurrentIntegralAxisAligned(center=center, size=size, sign="+") | ||
|
||
# Compute impedance using the tool | ||
Z_calc = ImpedanceCalculator( | ||
voltage_integral=voltage_integral, current_integral=current_integral | ||
) | ||
_ = Z_calc.compute_impedance(SIM_Z_DATA["field_time"]) | ||
Z_calc = ImpedanceCalculator(voltage_integral=voltage_integral, current_integral=None) | ||
_ = Z_calc.compute_impedance(SIM_Z_DATA["field_time"]) | ||
Z_calc = ImpedanceCalculator(voltage_integral=None, current_integral=current_integral) | ||
_ = Z_calc.compute_impedance(SIM_Z_DATA["field_time"]) | ||
|
||
|
||
def test_impedance_accuracy(): | ||
field_data = make_field_data() | ||
# Setup path integrals | ||
size = [0, STRIP_HEIGHT / 2, 0] | ||
center = [0, -STRIP_HEIGHT / 4, 0] | ||
voltage_integral = VoltageIntegralAxisAligned( | ||
center=center, size=size, sign="+", extrapolate_to_endpoints=True | ||
) | ||
|
||
size = [STRIP_WIDTH * 1.25, STRIP_HEIGHT / 2, 0] | ||
center = [0, 0, 0] | ||
current_integral = CurrentIntegralAxisAligned(center=center, size=size, sign="+") | ||
|
||
def impedance_of_stripline(width, height): | ||
# Assuming no fringing fields, is the same as a parallel plate | ||
# with half the height and carrying twice the current | ||
Z0_parallel_plate = 0.5 * height / width * td.ETA_0 | ||
return Z0_parallel_plate / 2 | ||
|
||
analytic_impedance = impedance_of_stripline(STRIP_WIDTH, STRIP_HEIGHT) | ||
|
||
# Compute impedance using the tool | ||
Z_calc = ImpedanceCalculator( | ||
voltage_integral=voltage_integral, current_integral=current_integral | ||
) | ||
Z1 = Z_calc.compute_impedance(field_data) | ||
Z_calc = ImpedanceCalculator(voltage_integral=voltage_integral, current_integral=None) | ||
Z2 = Z_calc.compute_impedance(field_data) | ||
Z_calc = ImpedanceCalculator(voltage_integral=None, current_integral=current_integral) | ||
Z3 = Z_calc.compute_impedance(field_data) | ||
|
||
# Computation that uses the flux is less accurate, due to staircasing the field | ||
assert np.all(np.isclose(Z1, analytic_impedance, rtol=0.02)) | ||
assert np.all(np.isclose(Z2, analytic_impedance, atol=3.5)) | ||
assert np.all(np.isclose(Z3, analytic_impedance, atol=3.5)) |
Oops, something went wrong.