forked from ami-iit/jaxsim
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request ami-iit#54 from ami-iit/automatic_differentiation
First steps towards automatic differentiation of RBDAs
- Loading branch information
Showing
3 changed files
with
226 additions
and
10 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
import jax.numpy as jnp | ||
import numpy as np | ||
import pytest | ||
from jax.test_util import check_grads | ||
from pytest import param as p | ||
|
||
from jaxsim.high_level.common import VelRepr | ||
from jaxsim.high_level.model import Model | ||
|
||
from . import utils_models, utils_rng | ||
from .utils_models import Robot | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"robot, vel_repr", | ||
[ | ||
p(*[Robot.Ur10, VelRepr.Inertial], id="Ur10-Inertial"), | ||
p(*[Robot.AnymalC, VelRepr.Inertial], id="AnymalC-Inertial"), | ||
p(*[Robot.Cassie, VelRepr.Inertial], id="Cassie-Inertial"), | ||
], | ||
) | ||
def test_ad_physics(robot: utils_models.Robot, vel_repr: VelRepr) -> None: | ||
"""Unit test of the application of Automatic Differentiation on RBD algorithms.""" | ||
|
||
robot = Robot.Ur10 | ||
vel_repr = VelRepr.Inertial | ||
|
||
# Initialize the gravity | ||
gravity = np.array([0, 0, -10.0]) | ||
|
||
# Get the URDF of the robot | ||
urdf_file_path = utils_models.ModelFactory.get_model_description(robot=robot) | ||
|
||
# Build the high-level model | ||
model = Model.build_from_model_description( | ||
model_description=urdf_file_path, | ||
vel_repr=vel_repr, | ||
gravity=gravity, | ||
is_urdf=True, | ||
).mutable(mutable=True, validate=True) | ||
|
||
# Initialize the model with a random state | ||
model.data.model_state = utils_rng.random_physics_model_state( | ||
physics_model=model.physics_model | ||
) | ||
|
||
# Initialize the model with a random input | ||
model.data.model_input = utils_rng.random_physics_model_input( | ||
physics_model=model.physics_model | ||
) | ||
|
||
# ======================== | ||
# Extract state and inputs | ||
# ======================== | ||
|
||
# Extract the physics model used in the low-level physics algorithms | ||
physics_model = model.physics_model | ||
|
||
# State | ||
s = model.joint_positions() | ||
ṡ = model.joint_velocities() | ||
xfb = model.data.model_state.xfb() | ||
|
||
# Inputs | ||
f_ext = model.external_forces() | ||
tau = model.joint_generalized_forces_targets() | ||
|
||
# Perturbation used for computing finite differences | ||
ε = jnp.finfo(jnp.array(0.0)).resolution ** (1 / 3) | ||
|
||
# ===================================================== | ||
# Check first-order and second-order derivatives of ABA | ||
# ===================================================== | ||
|
||
import jaxsim.physics.algos.aba | ||
|
||
aba = lambda xfb, s, ṡ, tau, f_ext: jaxsim.physics.algos.aba.aba( | ||
model=physics_model, xfb=xfb, q=s, qd=ṡ, tau=tau, f_ext=f_ext | ||
) | ||
|
||
check_grads( | ||
f=aba, | ||
args=(xfb, s, ṡ, tau, f_ext), | ||
order=2, | ||
modes=["rev", "fwd"], | ||
eps=ε, | ||
) | ||
|
||
# ====================================================== | ||
# Check first-order and second-order derivatives of RNEA | ||
# ====================================================== | ||
|
||
import jaxsim.physics.algos.rnea | ||
|
||
W_v̇_WB = utils_rng.get_rng().uniform(size=6, low=-1) | ||
s̈ = utils_rng.get_rng().uniform(size=physics_model.dofs(), low=-1) | ||
|
||
rnea = lambda xfb, s, ṡ, s̈, W_v̇_WB, f_ext: jaxsim.physics.algos.rnea.rnea( | ||
model=physics_model, xfb=xfb, q=s, qd=ṡ, qdd=s̈, a0fb=W_v̇_WB, f_ext=f_ext | ||
) | ||
|
||
check_grads( | ||
f=rnea, | ||
args=(xfb, s, ṡ, s̈, W_v̇_WB, f_ext), | ||
order=2, | ||
modes=["rev", "fwd"], | ||
eps=ε, | ||
) | ||
|
||
# ====================================================== | ||
# Check first-order and second-order derivatives of CRBA | ||
# ====================================================== | ||
|
||
import jaxsim.physics.algos.crba | ||
|
||
crba = lambda s: jaxsim.physics.algos.crba.crba(model=physics_model, q=s) | ||
|
||
check_grads( | ||
f=crba, | ||
args=(s,), | ||
order=2, | ||
modes=["rev", "fwd"], | ||
eps=ε, | ||
) | ||
|
||
# ==================================================== | ||
# Check first-order and second-order derivatives of FK | ||
# ==================================================== | ||
|
||
import jaxsim.physics.algos.forward_kinematics | ||
|
||
fk = ( | ||
lambda xfb, s: jaxsim.physics.algos.forward_kinematics.forward_kinematics_model( | ||
model=physics_model, xfb=xfb, q=s | ||
) | ||
) | ||
|
||
check_grads( | ||
f=fk, | ||
args=(xfb, s), | ||
order=2, | ||
modes=["rev", "fwd"], | ||
eps=ε, | ||
) | ||
|
||
# ========================================================== | ||
# Check first-order and second-order derivatives of Jacobian | ||
# ========================================================== | ||
|
||
import jaxsim.physics.algos.jacobian | ||
|
||
link_indices = [l.index() for l in model.links()] | ||
|
||
jacobian = lambda s: jaxsim.physics.algos.jacobian.jacobian( | ||
model=physics_model, q=s, body_index=link_indices[-1] | ||
) | ||
|
||
check_grads( | ||
f=jacobian, | ||
args=(s,), | ||
order=2, | ||
modes=["rev", "fwd"], | ||
eps=ε, | ||
) | ||
|
||
# ===================================================================== | ||
# Check first-order and second-order derivatives of soft contacts model | ||
# ===================================================================== | ||
|
||
import jaxsim.physics.algos.soft_contacts | ||
|
||
p = utils_rng.get_rng().uniform(size=3, low=-1) | ||
v = utils_rng.get_rng().uniform(size=3, low=-1) | ||
m = utils_rng.get_rng().uniform(size=3, low=-1) | ||
|
||
parameters = jaxsim.physics.algos.soft_contacts.SoftContactsParams.build( | ||
K=10_000, D=20.0, mu=0.5 | ||
) | ||
|
||
soft_contacts = lambda p, v, m: jaxsim.physics.algos.soft_contacts.SoftContacts( | ||
parameters=parameters | ||
).contact_model(position=p, velocity=v, tangential_deformation=m) | ||
|
||
check_grads( | ||
f=soft_contacts, | ||
args=(p, v, m), | ||
order=2, | ||
modes=["rev", "fwd"], | ||
eps=ε, | ||
) |