-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e269198
commit 4c0936c
Showing
3 changed files
with
154 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,16 @@ | ||
|
||
dat = read.csv("~/Downloads/Use_Avail.csv", stringsAsFactors = T) | ||
|
||
library(lme4) | ||
library(DHARMa) | ||
|
||
M2 <- glmer(cbind(Used, NotUsed) ~ Sex + type + (1 | ID), family = binomial, | ||
data=Use_Avail) | ||
data=dat) | ||
simOut <- simulateResiduals(M2, plot = T) | ||
plotResiduals(simOut, Use_Avail$type) | ||
plotResiduals(simOut, Use_Avail$Sex) | ||
plotResiduals(simOut, dat$type) | ||
plotResiduals(simOut, dat$Sex) | ||
|
||
sessionInfo() | ||
|
||
|
||
install.packages("DHARMa") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
|
||
|
||
TooHot = read.csv('https://raw.githubusercontent.com/HugoMH/Stat_M1_BootGLMM/main/TDs/Data/Suicides%20and%20Ambient%20Temperature.csv') | ||
head(TooHot) | ||
|
||
TooHot$Temperature2 = TooHot$Temperature^2 | ||
|
||
Mpoisson = glm(Suicides ~ Temperature + Temperature2 + Country | ||
,data = TooHot | ||
,family = poisson(link = 'log')) # !! <°)))>< !! | ||
|
||
MpoissonRE = lme4::glmer(Suicides ~ Temperature + Temperature2 + (1|Country) | ||
,data = TooHot, family = poisson(link = 'log')) | ||
|
||
DHARMa::testDispersion(Mpoisson,plot = F) | ||
# dispersion = 11350, p-value < 2.2e-16 | ||
|
||
DHARMa::testDispersion(MpoissonRE,plot = F) | ||
summary(MpoissonRE) | ||
|
||
|
||
# Best to check dispersion with conditional simulations | ||
res2 <- simulateResiduals(MpoissonRE, re.form = NULL) | ||
DHARMa::testDispersion(res2) | ||
|
||
plot(res2) | ||
|
||
|
||
# The analytical test can also be used but it is not generally reliable (biased towards underdispersion) | ||
DHARMa::testDispersion(MpoissonRE, type = "PearsonChisq") | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
# fit <- readRDS("~/Downloads/Pinus.strobus_fit_k10_bsts_selectFALSE.rds") | ||
fit <- readRDS("~/Downloads/Basalarea_fit_Pinus.strobus_tekc(25,50).rds") | ||
|
||
summary(fit) | ||
|
||
dat = model.frame(fit) | ||
|
||
res = simulateResiduals(fit, plot = F) | ||
res2 = recalculateResiduals(res, group = dat$blname) | ||
plot(res, quantreg = F) | ||
testDispersion(res) | ||
|
||
# testing if tweedie works in principle, using example of mgcv | ||
|
||
library(mgcv) | ||
|
||
# checking shape | ||
hist(rTweedie(rep(1,1000),p=1.5,phi=1.3)) | ||
|
||
|
||
f2 <- function(x) 0.2 * x^11 * (10 * (1 - x))^6 + 10 * | ||
(10 * x)^3 * (1 - x)^10 | ||
n <- 3000 | ||
x <- runif(n) | ||
mu <- exp(f2(x)/3+.1);x <- x*10 - 4 | ||
y <- rTweedie(mu,p=1.5,phi=1.3) | ||
b <- gam(y~s(x,k=20),family=Tweedie(p=1.3)) | ||
|
||
|
||
res = simulateResiduals(b, plot = F) | ||
plot(res, quantreg = F) | ||
|
||
|
||
testDispersion(res) | ||
testDispersion(res, type = "PearsonChisq") | ||
|
||
|
||
x = residuals(b, type = "response") | ||
|
||
x = residuals(b, type = "scaled.pearson") | ||
sd(x) | ||
|
||
x = residuals(b, type = "pearson") | ||
sd(x) | ||
|
||
|
||
|
||
|
||
|
||
# testing variations of the dispersion test | ||
|
||
fit <- readRDS("~/Downloads/Basalarea_fit_Pinus.strobus_tekc(25,50).rds") | ||
|
||
|
||
|
||
# Scaled Pearson residuals are raw residuals divided by the standard deviation of the data according to the model mean variance relationship and estimated scale parameter. | ||
x = residuals(fit, type = "scaled.pearson") | ||
sd(x) | ||
|
||
# | ||
x = residuals(fit, type = "pearson") | ||
sd(x) | ||
|
||
testDispersion(res, type = "PearsonChisq") | ||
|
||
res = simulateResiduals(fit, n = 1000, plot = F) | ||
|
||
simulatedSD = apply(res$simulatedResponse, 1, sd) | ||
|
||
residuals(fit, type = "response") / simulatedSD | ||
|
||
|
||
sd(res$simulatedResponse)^2 | ||
spread <- function(x) var(x - simulationOutput$fittedPredictedResponse) / expectedVar | ||
|
||
spread <- function(x) var(x - simulationOutput$fittedPredictedResponse) / var(simulationOutput$fittedPredictedResponse) | ||
|
||
out = testGeneric(simulationOutput, summary = spread, alternative = alternative, methodName = "DHARMa nonparametric dispersion test via sd of residuals fitted vs. simulated", plot = plot, ...) | ||
|
||
|
||
|
||
out = list() | ||
out$data.name = deparse(substitute(simulationOutput)) | ||
|
||
simulationOutput = ensureDHARMa(simulationOutput, convert = "Model") | ||
|
||
alternative <- match.arg(alternative) | ||
|
||
observed = summary(simulationOutput$observedResponse) | ||
|
||
simulated = apply(simulationOutput$simulatedResponse, 2, summary) | ||
|
||
p = getP(simulated = simulated, observed = observed, alternative = alternative) | ||
|
||
out$statistic = c(ratioObsSim = observed / mean(simulated)) | ||
out$method = methodName | ||
out$alternative = alternative | ||
out$p.value = p | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|