Skip to content

Latest commit

 

History

History
26 lines (23 loc) · 1.2 KB

README.md

File metadata and controls

26 lines (23 loc) · 1.2 KB

Instructions

Environment

  • pip install -r requirements.txt

T2.1

  • Model choice: ResNet18 trained on train.part1 with BCE loss
  • cd <directory/with/train.py>

Train

    • python train.py --train_dataset_path <path/to/train1/train> --val_dataset_path <path/to/val/val>

Test

    • python test.py --dataset_path <path/to/val/val>
    • Metrics achieved on dataset train.part2: Accuracy = 0.99, Precision = 0.99, Recall = 0.99

T2.2 Baseline

  • Model choice: custom autoencoder trained on train.part1 with L1 loss
  • cd <directory/with/train.py>

Train

    • python train.py --train_dataset_path <path/to/train1/train> --val_dataset_path <path/to/val/val>

Test

    • python test.py --dataset_path <path/to/val/val>
    • Metrics achieved on dataset train.part2: MSE = 0.236

Possilbe improvements

  • SwinUNet transformer for image denoising
  • Swin Transformer for image restoration
  • Convert mel-spectrograms to audio arrays with known construction parameters, such as sampling rate. Then apply something like Speech denoising WaveNet to remove noise