Skip to content

fortminors/tgz

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Instructions

Environment

  • pip install -r requirements.txt

T2.1

  • Model choice: ResNet18 trained on train.part1 with BCE loss
  • cd <directory/with/train.py>

Train

    • python train.py --train_dataset_path <path/to/train1/train> --val_dataset_path <path/to/val/val>

Test

    • python test.py --dataset_path <path/to/val/val>
    • Metrics achieved on dataset train.part2: Accuracy = 0.99, Precision = 0.99, Recall = 0.99

T2.2 Baseline

  • Model choice: custom autoencoder trained on train.part1 with L1 loss
  • cd <directory/with/train.py>

Train

    • python train.py --train_dataset_path <path/to/train1/train> --val_dataset_path <path/to/val/val>

Test

    • python test.py --dataset_path <path/to/val/val>
    • Metrics achieved on dataset train.part2: MSE = 0.236

Possilbe improvements

  • SwinUNet transformer for image denoising
  • Swin Transformer for image restoration
  • Convert mel-spectrograms to audio arrays with known construction parameters, such as sampling rate. Then apply something like Speech denoising WaveNet to remove noise

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages