Skip to content

An environment to assess the accuracy of thermal building models under realistic conditions.

License

Notifications You must be signed in to change notification settings

fzi-forschungszentrum-informatik/TBMEnv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TBMEnv - An Environment to Assess the Accuracy of Thermal Building Models under Realistic Conditions

TBMEnv is an program that can be used to evaluate and benchmark models of model-based thermal building optimization algorithms, which are most likely model-based reinforcement learning approaches. The main goal of the environment is to support the evaluation of thermal (machine learning) building models under realistic conditions as this cannot be achieved using available environments like BOPTEST or Sinergym. For more details and background please see the accompanying paper. In case you have no access to ACM DL a copy can be found here.

Installation

Begin by checking out the source code:

git clone https://github.com/fzi-forschungszentrum-informatik/tbmenv.git
cd tbmenv

This is code is written in Python. Given that Python and pip are installed, you can install the environment by typing:

pip3 install -e ./source/

As an alternative this repository contains a docker-compose.yml specifying a docker runtime. Assuming that docker and docker compose are available it is possible to start the container with the following command:

docker compose up --build

The second option may be more suitable, especially for those just wanting to play around with the demo notebooks provided.

Usage

Please see the usage example notebook.

Building Data

We would like to thank the Institute for Automation and Applied Informatics of the Karlsruhe Institute of Technology for providing the data and information about the building that has been used as blueprint for Scenario 1. The dataset has been recorded in the research project "Flexkälte – Flexibilisierung vorhandener Kälteanlagen und deren optimierter Einsatz in einer Realweltanwendung" funded by the German Federal Ministry for Economic Affairs and Climate Action.

The measurement data utilized in Scenario 2 has been taken from here.

Citation

Please consider citing us if this environment and/or the accompanying paper was useful for your scientific work. You can use the following BibTex entry:

@inproceedings{10.1145/3600100.3625683,
author = {W\"{o}lfle, David and Vossberg, Samed Rouven and Schmeck, Hartmut},
title = {TBMEnv - An Environment to Assess the Accuracy of Thermal Building Models under Realistic Conditions},
year = {2023},
isbn = {9798400702303},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3600100.3625683},
doi = {10.1145/3600100.3625683},
booktitle = {Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation},
pages = {357–360},
numpages = {4},
keywords = {reinforcement learning, building control, building energy management, evaluation, benchmark, environment, smart building},
location = {Istanbul, Turkey},
series = {BuildSys '23}
}

Other reference formats are provided here (export citation button).

Contact

Please open an issue here on GitHub for any question or remark regarding the implementation. Please feel free to contact David Wölfle for all other inquiries.

Copyright and license

Code is copyright to the FZI Research Center for Information Technology and released under the MIT license.

About

An environment to assess the accuracy of thermal building models under realistic conditions.

Resources

License

Stars

Watchers

Forks

Packages

No packages published