Skip to content

Commit

Permalink
revert to mvt from scipy
Browse files Browse the repository at this point in the history
  • Loading branch information
gboehl committed Jun 6, 2024
1 parent 7158430 commit d2b7f67
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 60 deletions.
100 changes: 40 additions & 60 deletions dime_sampler/moves.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,25 +7,6 @@
from scipy.stats import multivariate_t


def mvt_sample(df, mean, cov, size, random):
"""Sample from multivariate t distribution
For reasons beyond my understanding, the results from random.multivariate_normal with non-identity covariance matrix are not reproducibel across architecture for given random seeds. Since scipy.stats.multivariate_t is based on numpy's multivariate_normal, the workaround is to crochet this manually. Advantage is that the scipy dependency drops out.
"""

dim = len(mean)

# draw samples
snorm = random.randn(size, dim)
chi2 = random.chisquare(df, size) / df

# calculate sqrt of covariance
svd_cov = np.linalg.svd(cov * (df - 2) / df)
sqrt_cov = svd_cov[0] * np.sqrt(svd_cov[1]) @ svd_cov[2]

return mean + snorm @ sqrt_cov / np.sqrt(chi2)[:, None]


class DIMEMove(RedBlueMove):
r"""A proposal using adaptive differential-independence mixture ensemble MCMC.
Expand All @@ -38,9 +19,9 @@ class DIMEMove(RedBlueMove):
gamma : float, optional
mean stretch factor for the proposal vector. By default, it is :math:`2.38 / \sqrt{2\,\mathrm{ndim}}` as recommended by `ter Braak (2006) <http://www.stat.columbia.edu/~gelman/stuff_for_blog/cajo.pdf>`_.
aimh_prob : float, optional
probability to draw an adaptive independence Metropolis Hastings (AIMH) proposal. By default this is set to :math:`0.1`.
probability to draw an global transition kernel. By default this is set to :math:`0.1`.
df_proposal_dist : float, optional
degrees of freedom of the multivariate t distribution used for AIMH proposals. Defaults to :math:`10`.
degrees of freedom of the multivariate t distribution used for global kernel. Defaults to :math:`10`.
rho : float, optional
decay parameter for the aimh proposal mean and covariances. Defaults to :math:`0.999`.
"""
Expand Down Expand Up @@ -70,10 +51,10 @@ def setup(self, coords):
# even more MAGIC
self.prop_cov = np.eye(npar)
self.prop_mean = np.zeros(npar)
self.accepted = np.ones(nchain, dtype=bool)
self.cumlweight = -np.inf
self.update_proposal_dist(None)
else:
# update AIMH proposal distribution
# update global kernel proposal distribution
self.update_proposal_dist(coords)

def propose(self, model, state):
Expand All @@ -89,30 +70,39 @@ def update_proposal_dist(self, x):
"""Update proposal distribution with ensemble `x`
"""

nchain, npar = x.shape

# log weight of current ensemble
if self.accepted.any():
lweight = logsumexp(self.lprobs) + \
np.log(sum(self.accepted)) - np.log(nchain)
else:
lweight = -np.inf

# calculate stats for current ensemble
ncov = np.cov(x.T, ddof=1)
nmean = np.mean(x, axis=0)

# update AIMH proposal distribution
newcumlweight = np.logaddexp(self.cumlweight, lweight)
self.prop_cov = (
np.exp(self.cumlweight - newcumlweight) * self.prop_cov
+ np.exp(lweight - newcumlweight) * ncov
)
self.prop_mean = (
np.exp(self.cumlweight - newcumlweight) * self.prop_mean
+ np.exp(lweight - newcumlweight) * nmean
if x is not None:
# calculate global kernel parameters
nchain, npar = x.shape

# log weight of current ensemble
if self.accepted.any():
lweight = logsumexp(self.lprobs) + \
np.log(sum(self.accepted)) - np.log(nchain)
else:
lweight = -np.inf

# calculate stats for current ensemble
ncov = np.cov(x.T, ddof=1)
nmean = np.mean(x, axis=0)

# update global kernel proposal distribution
newcumlweight = np.logaddexp(self.cumlweight, lweight)
self.prop_cov = (
np.exp(self.cumlweight - newcumlweight) * self.prop_cov
+ np.exp(lweight - newcumlweight) * ncov
)
self.prop_mean = (
np.exp(self.cumlweight - newcumlweight) * self.prop_mean
+ np.exp(lweight - newcumlweight) * nmean
)
self.cumlweight = newcumlweight + np.log(self.decay)

# create frozen distribution
self.mvt = multivariate_t(
self.prop_mean,
self.prop_cov * (self.dft - 2) / self.dft,
df=self.dft
)
self.cumlweight = newcumlweight + np.log(self.decay)

def get_proposal(self, x, xref, random):
"""Actual proposal function
Expand All @@ -131,23 +121,13 @@ def get_proposal(self, x, xref, random):
q = x + self.g0 * (xref[i0 % nref] - xref[i1 % nref]) + f[:, None]
factors = np.zeros(nchain, dtype=np.float64)

# draw chains for AIMH sampling
# draw chains for global transition kernel
xchnge = random.rand(nchain) <= self.aimh_prob

# draw alternative candidates and calculate their proposal density
xcand = mvt_sample(
df=self.dft,
mean=self.prop_mean,
cov=self.prop_cov,
size=sum(xchnge),
random=random,
)
lprop_old, lprop_new = multivariate_t.logpdf(
np.vstack((x[None, xchnge], xcand[None])),
self.prop_mean,
self.prop_cov * (self.dft - 2) / self.dft,
df=self.dft,
)
xcand = self.mvt.rvs(size=sum(xchnge), random_state=random)
lprop_old = self.mvt.logpdf(x[xchnge])
lprop_new = self.mvt.logpdf(xcand)

# update proposals and factors
q[xchnge, :] = np.reshape(xcand, (-1, npar))
Expand Down
Binary file modified dime_sampler/test_storage/median.npy
Binary file not shown.

0 comments on commit d2b7f67

Please sign in to comment.