Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Small Refactoring towards Stability #2

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 41 additions & 33 deletions notebooks/ts_for_contextual_bandit.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -3308,64 +3308,72 @@
"class OnlineLogisticRegression:\n",
" \n",
" # initializing\n",
" def __init__(self, lambda_, alpha, n_dim):\n",
" \n",
" # the only hyperparameter is the deviation on the prior (L2 regularizer)\n",
" self.lambda_ = lambda_; self.alpha = alpha\n",
" \n",
" # initializing parameters of the model\n",
" self.n_dim = n_dim, \n",
" self.m = np.zeros(self.n_dim)\n",
" self.q = np.ones(self.n_dim) * self.lambda_\n",
" \n",
" # initializing weights\n",
" self.w = np.random.normal(self.m, self.alpha * (self.q)**(-1.0), size = self.n_dim)\n",
" def __init__(self, lambda_, alpha, n_dim, intercept=False):\n",
" self.intercept = intercept\n",
" self.lambda_ = lambda_\n",
" self.alpha = alpha\n",
" self.n_dim = n_dim\n",
" self.m = np.zeros(self.n_dim + 1 if intercept else self.n_dim)\n",
" self.q = np.ones((self.n_dim + 1 if intercept else self.n_dim)) * self.lambda_\n",
" self.w = np.random.normal(self.m, self.alpha * self.q ** (-1.0),\n",
" size=(self.n_dim + 1 if intercept else self.n_dim))\n",
" \n",
" @staticmethod\n",
" def expand_dim(var_):\n",
" if np.ndim(var_) == 1:\n",
" var_ = np.expand_dims(var_, 1)\n",
" ones = np.ones(shape=(var_.shape[0], 1))\n",
" exp_var_ = np.concatenate([ones, var_], axis=1)\n",
" return exp_var_\n",
"\n",
" # the loss function\n",
" def loss(self, w, *args):\n",
" X, y = args\n",
" return 0.5 * (self.q * (w - self.m)).dot(w - self.m) + np.sum([np.log(1 + np.exp(-y[j] * w.dot(X[j]))) for j in range(y.shape[0])])\n",
" loss_ = 0.5 * (self.q * (w - self.m)).dot(w - self.m) + np.mean(\n",
" [np.log(1 + np.exp(-y[j] * w.dot(X[j]) + 1e-7)) for j in range(y.shape[0])])\n",
" return loss_\n",
" \n",
" # the gradient\n",
" def grad(self, w, *args):\n",
" X, y = args\n",
" return self.q * (w - self.m) + (-1) * np.array([y[j] * X[j] / (1. + np.exp(y[j] * w.dot(X[j]))) for j in range(y.shape[0])]).sum(axis=0)\n",
" grad_ = self.q * (w - self.m) + (-1) * np.array(\n",
" [y[j] * X[j] / (1. + np.exp(y[j] * w.dot(X[j]) + 1e-7)) for j in range(y.shape[0])]).sum(axis=0)\n",
" return grad_\n",
" \n",
" # method for sampling weights\n",
" def get_weights(self):\n",
" return np.random.normal(self.m, self.alpha * (self.q)**(-1.0), size = self.n_dim)\n",
" return np.random.normal(self.m, self.alpha * self.q ** (-1.0),\n",
" size=(self.n_dim + 1 if self.intercept else self.n_dim))\n",
" \n",
" # fitting method\n",
" def fit(self, X, y):\n",
" \n",
" # step 1, find w\n",
" self.w = minimize(self.loss, self.w, args=(X, y), jac=self.grad, method=\"L-BFGS-B\", options={'maxiter': 20, 'disp':True}).x\n",
" if self.intercept:\n",
" X = self.expand_dim(X)\n",
" self.w = minimize(self.loss, self.w, args=(X, y), jac=self.grad, method=\"CG\",\n",
" options={'maxiter': 100, 'disp': False}).x\n",
" self.m = self.w\n",
" \n",
" # step 2, update q\n",
" P = (1 + np.exp(-1*X.dot(self.m))) ** (-1)\n",
" self.q = self.q + (P*(1-P)).dot(X ** 2)\n",
" P = (1 + np.exp(-1 * X.dot(self.m))) ** (-1)\n",
" self.q = self.q + (P * (1 - P)).dot(X ** 2)\n",
" return\n",
" \n",
" # probability output method, using weights sample\n",
" def predict_proba(self, X, mode='sample'):\n",
" \n",
" # adding intercept to X\n",
" #X = add_constant(X)\n",
" \n",
" # sampling weights after update\n",
" if self.intercept:\n",
" X = self.expand_dim(X)\n",
" self.w = self.get_weights()\n",
" \n",
"\n",
" # using weight depending on mode\n",
" if mode == 'sample':\n",
" w = self.w # weights are samples of posteriors\n",
" w = self.w # weights are samples of posteriors\n",
" elif mode == 'expected':\n",
" w = self.m # weights are expected values of posteriors\n",
" w = self.m # weights are expected values of posteriors\n",
" else:\n",
" raise Exception('mode not recognized!')\n",
" \n",
"\n",
" # calculating probabilities\n",
" proba = 1 / (1 + np.exp(-1 * X.dot(w)))\n",
" return np.array([1-proba , proba]).T"
" return np.array([1-proba , proba]).T\n",
" "
]
},
{
Expand Down Expand Up @@ -13203,4 +13211,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}