-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
187 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
# --- | ||
# jupyter: | ||
# jupytext: | ||
# text_representation: | ||
# extension: .py | ||
# format_name: light | ||
# format_version: '1.5' | ||
# jupytext_version: 1.15.2 | ||
# kernelspec: | ||
# display_name: Python 3 | ||
# name: python3 | ||
# --- | ||
|
||
# # TiN TOPS heater | ||
|
||
# + tags=["hide-input"] | ||
from collections import OrderedDict | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from femwell.maxwell.waveguide import compute_modes | ||
from femwell.mesh import mesh_from_OrderedDict | ||
from femwell.thermal import solve_thermal | ||
from shapely.geometry import LineString, Polygon | ||
from skfem import Basis, ElementTriP0 | ||
from skfem.io import from_meshio | ||
from tqdm import tqdm | ||
|
||
# - | ||
|
||
# Simulating the TiN TOPS heater in {cite}`Jacques2019`. | ||
# First we set up the mesh: | ||
|
||
# + tags=["remove-stderr"] | ||
|
||
w_sim = 40 # 8 * 2 | ||
h_clad = 2.8 | ||
h_box = 2 | ||
w_core = 40 | ||
h_core = 0.22 | ||
h_heater = 0.14 | ||
w_heater = 2 | ||
offset_heater = 2 + (h_core + h_heater) / 2 | ||
h_silicon = 0.5 | ||
|
||
polygons = OrderedDict( | ||
bottom=LineString( | ||
[ | ||
(-w_sim / 2, -h_core / 2 - h_box - h_silicon), | ||
(w_sim / 2, -h_core / 2 - h_box - h_silicon), | ||
] | ||
), | ||
core=Polygon( | ||
[ | ||
(-w_core / 2, -h_core / 2), | ||
(-w_core / 2, h_core / 2), | ||
(w_core / 2, h_core / 2), | ||
(w_core / 2, -h_core / 2), | ||
] | ||
), | ||
heater=Polygon( | ||
[ | ||
(-w_heater / 2, -h_heater / 2 + offset_heater), | ||
(-w_heater / 2, h_heater / 2 + offset_heater), | ||
(w_heater / 2, h_heater / 2 + offset_heater), | ||
(w_heater / 2, -h_heater / 2 + offset_heater), | ||
] | ||
), | ||
clad=Polygon( | ||
[ | ||
(-w_sim / 2, -h_core / 2), | ||
(-w_sim / 2, -h_core / 2 + h_clad), | ||
(w_sim / 2, -h_core / 2 + h_clad), | ||
(w_sim / 2, -h_core / 2), | ||
] | ||
), | ||
box=Polygon( | ||
[ | ||
(-w_sim / 2, -h_core / 2), | ||
(-w_sim / 2, -h_core / 2 - h_box), | ||
(w_sim / 2, -h_core / 2 - h_box), | ||
(w_sim / 2, -h_core / 2), | ||
] | ||
), | ||
wafer=Polygon( | ||
[ | ||
(-w_sim / 2, -h_core / 2 - h_box - h_silicon), | ||
(-w_sim / 2, -h_core / 2 - h_box), | ||
(w_sim / 2, -h_core / 2 - h_box), | ||
(w_sim / 2, -h_core / 2 - h_box - h_silicon), | ||
] | ||
), | ||
) | ||
|
||
resolutions = dict( | ||
# core={"resolution": 0.04, "distance": 1}, | ||
clad={"resolution": 0.6, "distance": 1}, | ||
box={"resolution": 0.6, "distance": 1}, | ||
heater={"resolution": 0.1, "distance": 1}, | ||
) | ||
|
||
mesh = from_meshio( | ||
mesh_from_OrderedDict(polygons, resolutions, default_resolution_max=0.6) | ||
) | ||
mesh.draw().show() | ||
# - | ||
|
||
# And then we solve it! | ||
|
||
# + tags=["remove-stderr"] | ||
currents = np.linspace(0.0, 7.4e-3, 10) | ||
current_densities = currents / polygons["heater"].area | ||
neffs = [] | ||
|
||
for current_density in tqdm(current_densities): | ||
basis0 = Basis(mesh, ElementTriP0(), intorder=4) | ||
thermal_conductivity_p0 = basis0.zeros() | ||
for domain, value in { | ||
"core": 90, | ||
"box": 1.38, | ||
"clad": 1.38, | ||
"heater": 28, | ||
"wafer": 148, | ||
}.items(): | ||
thermal_conductivity_p0[basis0.get_dofs(elements=domain)] = value | ||
thermal_conductivity_p0 *= 1e-12 # 1e-12 -> conversion from 1/m^2 -> 1/um^2 | ||
|
||
basis, temperature = solve_thermal( | ||
basis0, | ||
thermal_conductivity_p0, | ||
specific_conductivity={"heater": 2.3e6}, | ||
current_densities={"heater": current_density}, | ||
fixed_boundaries={"bottom": 0}, | ||
) | ||
|
||
if current_density == current_densities[-1]: | ||
basis.plot(temperature, shading="gouraud", colorbar=True) | ||
plt.show() | ||
|
||
temperature0 = basis0.project(basis.interpolate(temperature)) | ||
epsilon = basis0.zeros() + (1.444 + 1.00e-5 * temperature0) ** 2 | ||
epsilon[basis0.get_dofs(elements="core")] = ( | ||
3.4777 + 1.86e-4 * temperature0[basis0.get_dofs(elements="core")] | ||
) ** 2 | ||
# basis0.plot(epsilon, colorbar=True).show() | ||
|
||
modes = compute_modes(basis0, epsilon, wavelength=1.55, num_modes=1) | ||
|
||
if current_density == current_densities[-1]: | ||
modes[0].show(modes[0].E.real) | ||
|
||
neffs.append(np.real(modes[0].n_eff)) | ||
|
||
print(f"Phase shift: {2 * np.pi / 1.55 * (neffs[-1] - neffs[0]) * 320}") | ||
plt.xlabel("Current / mA") | ||
plt.ylabel("Effective refractive index $n_{eff}$") | ||
plt.plot(currents * 1e3, neffs) | ||
plt.show() | ||
|
||
|
||
# + | ||
dofs = basis.get_dofs(elements="core").flatten() | ||
|
||
plt.scatter( | ||
basis.doflocs[:, dofs.flatten()][0, :], | ||
temperature[dofs] / np.max(temperature[dofs]), | ||
marker=".", | ||
) | ||
plt.axvline(x=0, color="b", linestyle="--") | ||
plt.axvline(x=2, color="g", linestyle="--") | ||
plt.axvline(x=5, color="r", linestyle="--") | ||
plt.axvline(x=8, color="c", linestyle="--") | ||
plt.axvline(x=11, color="m", linestyle="--") | ||
plt.axvline(x=20, color="y", linestyle="--") | ||
|
||
plt.title("Diffusion length at core layer") | ||
plt.xlabel("x (um)") | ||
plt.ylabel("Temperature (relative to underneath heater)") | ||
|
||
# - | ||
|
||
# ## Bibliography | ||
# | ||
# ```{bibliography} | ||
# :style: unsrt | ||
# :filter: docname in docnames | ||
# ``` |