-
Notifications
You must be signed in to change notification settings - Fork 22
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
83 additions
and
62 deletions.
There are no files selected for viewing
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
.. IntegronFinder - Detection of Integron in DNA sequences | ||
.. _introduction: | ||
|
||
************ | ||
Introduction | ||
************ | ||
|
||
Integrons are major genetic element, notorious for their major implication in the spread of antibiotic resistance genes. More generally, integrons are gene-capturing platform, whose broader evolutionary role remains poorly understood. IntegronFinder is able to detect with high accuracy integron in DNA sequences. It is accurate because it combines the use of HMM profiles for the detection of the essential protein, the site-specific integron integrase, and the use of Covariance Models for the detection of the recombination site, the *attC* site. | ||
|
||
|integron schema| | ||
|
||
**How does it work ?** | ||
|
||
- First, IntegronFinder annotates the DNA sequence's CDS with Prodigal. | ||
|
||
- Second, IntegronFinder detects independently integron integrase and *attC* | ||
recombination sites. The Integron integrase is detected by using the intersection | ||
of two HMM profiles: | ||
|
||
- one specific of tyrosine-recombinase (PF00589) | ||
- one specific of the integron integrase, near the patch III domain of tyrosine recombinases. | ||
|
||
The *attC* recombination site is detected with a covariance model (CM), which | ||
models the secondary structure in addition to the few conserved sequence | ||
positions. | ||
|
||
|
||
- Third, the results are integrated, and IntegronFinder distinguishes 3 types of | ||
elements: | ||
|
||
- complete integron (panel B above) | ||
Integron with integron integrase nearby *attC* site(s) | ||
- In0 element (panel C above) | ||
Integron integrase only, without any *attC* site nearby | ||
- CALIN element (panel D above) | ||
*attC* sites only, without integron integrase nearby. | ||
A rule of thumb to avoid false positive is to filter out singleton of | ||
*attC* site. | ||
|
||
IntegronFinder can also annotate gene cassettes (CDS nearby *attC* sites) using | ||
Resfams, a database of HMM profiles aiming at annotating antibiotic resistance | ||
genes. This database is provided but the user can add any other HMM profiles | ||
database of its own interest. | ||
|
||
When available, IntegronFinder annotates the promoters and attI sites by pattern | ||
matching. | ||
|
||
|pipeline| | ||
|
||
**Does it work ?** | ||
|
||
Yes! The estimated sensitivity is 61% on average with the default option and goes up to 88% with the `--local_max` option. The missing *attC* sites are usually at the end of the array. The False positive rate with the `--local_max` option is estimated between 0.03 False Positive per Megabases (FP/Mb) to 0.72 FP/Mb. This leads to a probability of finding 2 consecutive *attC* sites within 4kb between 4.10^-6 and 7.10^-9. Finally, this parameters do not depend on the G+C percent of the given replicon. | ||
|
||
|benchmark| | ||
|
||
The time in the table correspond to the average time per run with a pseudogenome having attC sites on a Mac Pro, 2 x 2.4 GHz 6-Core Intel Xeon, 16 Gb RAM, with options --cpu 20 and --no-proteins. | ||
|
||
.. Note:: | ||
The time does not vary depending of the mode (default or local_max), and is about a couple of second, if the replicon does not contain any *attC* site. | ||
|
||
|
||
.. |benchmark| image:: _static/benchmark.* | ||
:width: 400px | ||
:align: middle | ||
:alt: IntegronFinder Benchmark | ||
|
||
.. |pipeline| image:: _static/pipeline.* | ||
:width: 400px | ||
:align: middle | ||
:alt: IntegronFinder Pipeline | ||
|
||
.. |integron schema| image:: _static/schema.* | ||
:align: middle | ||
:width: 300px | ||
:alt: Integron Schema |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters