Skip to content

Commit

Permalink
Merge branch 'develop' into pr/595
Browse files Browse the repository at this point in the history
  • Loading branch information
raphaelDkhn committed Apr 22, 2024
2 parents 6ab6d8d + 2a2c8e5 commit c67cb4a
Show file tree
Hide file tree
Showing 619 changed files with 21,429 additions and 11,807 deletions.
Binary file added .DS_Store
Binary file not shown.
2 changes: 1 addition & 1 deletion .github/workflows/test.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -9,5 +9,5 @@ jobs:
- uses: actions/checkout@v3
- uses: software-mansion/setup-scarb@v1
with:
scarb-version: "2.5.3"
scarb-version: "2.6.4"
- run: scarb test --workspace && scarb fmt --workspace
2 changes: 1 addition & 1 deletion .tool-versions
Original file line number Diff line number Diff line change
@@ -1 +1 @@
scarb 2.5.3
scarb 2.6.4
2 changes: 1 addition & 1 deletion Scarb.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[package]
name = "orion"
version = "0.2.4"
version = "0.2.5"
cairo-version = "2.5.3"
edition = "2023_10"
description = "ONNX Runtime in Cairo for verifiable ML inference using STARK"
Expand Down
8 changes: 8 additions & 0 deletions docgen/src/main.rs
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,14 @@ fn main() {
doc_trait(trait_path, doc_path, label);
doc_functions(trait_path, doc_path, trait_name, label);

// TREE ENSEMBLE DOC
let trait_path = "src/operators/ml/tree_ensemble/tree_ensemble.cairo";
let doc_path = "docs/framework/operators/machine-learning/tree-ensemble";
let label = "tree_ensemble";
let trait_name: &str = "TreeEnsembleTrait";
doc_trait(trait_path, doc_path, label);
doc_functions(trait_path, doc_path, trait_name, label);

// LINEAR REGRESSOR DOC
let trait_path = "src/operators/ml/linear/linear_regressor.cairo";
let doc_path = "docs/framework/operators/machine-learning/linear-regressor";
Expand Down
5 changes: 4 additions & 1 deletion docs/SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -113,6 +113,7 @@
* [tensor.qlinear\_matmul](framework/operators/tensor/tensor.qlinear\_matmul.md)
* [tensor.qlinear\_concat](framework/operators/tensor/tensor.qlinear\_concat.md)
* [tensor.qlinear\_leakyrelu](framework/operators/tensor/tensor.qlinear\_leakyrelu.md)
* [tensor.qlinear\_conv](framework/operators/tensor/tensor.qlinear\_conv.md)
* [tensor.nonzero](framework/operators/tensor/tensor.nonzero.md)
* [tensor.squeeze](framework/operators/tensor/tensor.squeeze.md)
* [tensor.unsqueeze](framework/operators/tensor/tensor.unsqueeze.md)
Expand Down Expand Up @@ -174,11 +175,13 @@
* [nn.gemm](framework/operators/neural-network/nn.gemm.md)
* [nn.grid\_sample](framework/operators/neural-network/nn.grid\_sample.md)
* [nn.col2im](framework/operators/neural-network/nn.col2im.md)
* [nn.conv_transpose](framework/operators/neural-network/nn.conv\_transpose.md)
* [nn.conv\_transpose](framework/operators/neural-network/nn.conv\_transpose.md)
* [nn.conv](framework/operators/neural-network/nn.conv.md)
* [nn.conv_integer](framework/operators/neural-network/nn.conv\_integer.md)
* [nn.depth_to_space](framework/operators/neural-network/nn.depth_to_space.md)
* [nn.space_to_depth](framework/operators/neural-network/nn.space_to_depth.md)
* [nn.max\_pool](framework/operators/neural-network/nn.max\_pool.md)
* [nn.deform\_conv](framework/operators/neural-network/nn.deform\_conv_.md)
* [Machine Learning](framework/operators/machine-learning/README.md)
* [Tree Ensemble Classifier](framework/operators/machine-learning/tree-ensemble-classifier/README.md)
* [tree\_ensemble\_classifier.predict](framework/operators/machine-learning/tree-ensemble-classifier/tree\_ensemble\_classifier.predict.md)
Expand Down
3 changes: 3 additions & 0 deletions docs/framework/compatibility.md
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,8 @@ You can see below the list of current supported ONNX Operators:
| [ConvTranspose](operators/neural-network/nn.conv\_transpose_.md) | :white\_check\_mark: |
| [Conv](operators/neural-network/nn.conv.md) | :white\_check\_mark: |
| [ConvInteger](operators/neural-network/nn.conv\_integer_.md) | :white\_check\_mark: |
| [MaxPool](operators/neural-network/nn.max\_pool.md) | :white\_check\_mark: |
| [DeformConv](operators/neural-network/nn.deform\_conv_.md) | :white\_check\_mark: |
| [Sinh](operators/tensor/tensor.sinh.md) | :white\_check\_mark: |
| [Asinh](operators/tensor/tensor.asinh.md) | :white\_check\_mark: |
| [Atanh](operators/tensor/tensor.atanh.md) | :white\_check\_mark: |
Expand All @@ -67,6 +69,7 @@ You can see below the list of current supported ONNX Operators:
| [QlinearAdd](operators/tensor/tensor.qlinear\_add.md) | :white\_check\_mark: |
| [QlinearMul](operators/tensor/tensor.qlinear\_mul.md) | :white\_check\_mark: |
| [QLinearLeakyRelu](operators/tensor/tensor.qlinear\_leakyrelu.md) | :white\_check\_mark: |
| [QLinearConv](operators/tensor/tensor.qlinear\_conv_.md) | :white\_check\_mark: |
| [Nonzero](operators/tensor/tensor.nonzero.md) | :white\_check\_mark: |
| [Squeeze](operators/tensor/tensor.squeeze.md) | :white\_check\_mark: |
| [Unsqueeze](operators/tensor/tensor.unsqueeze.md) | :white\_check\_mark: |
Expand Down
22 changes: 22 additions & 0 deletions docs/framework/operators/machine-learning/tree-ensemble/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# Tree Ensemble

`TreeEnsembleTrait` provides a trait definition for tree ensemble problem.

```rust
use orion::operators::ml::TreeEnsembleTrait;
```

### Data types

Orion supports currently only fixed point data types for `TreeEnsembleTrait`.

| Data type | dtype |
| -------------------- | ------------------------------------------------------------- |
| Fixed point (signed) | `TreeEnsembleTrait<FP8x23 \| FP16x16 \| FP64x64 \| FP32x32>` |


***

| function | description |
| --- | --- |
| [`tree_ensemble.predict`](tree_ensemble.predict.md) | Returns the regressed values for each input in a batch. |
Original file line number Diff line number Diff line change
@@ -0,0 +1,139 @@
# TreeEnsemble::predict

```rust
fn predict(X: @Tensor<T>,
nodes_splits: Tensor<T>,
nodes_featureids: Span<usize>,
nodes_modes: Span<MODE>,
nodes_truenodeids: Span<usize>,
nodes_falsenodeids: Span<usize>,
nodes_trueleafs: Span<usize>,
nodes_falseleafs: Span<usize>,
leaf_targetids: Span<usize>,
leaf_weights: Tensor<T>,
tree_roots: Span<usize>,
post_transform: POST_TRANSFORM,
aggregate_function: AGGREGATE_FUNCTION,
nodes_hitrates: Option<Tensor<T>>,
nodes_missing_value_tracks_true: Option<Span<usize>>,
membership_values: Option<Tensor<T>>,
n_targets: usize
) -> MutMatrix::<T>;
```

Tree Ensemble operator. Returns the regressed values for each input in a batch. Inputs have dimensions [N, F] where N is the input batch size and F is the number of input features. Outputs have dimensions [N, num_targets] where N is the batch size and num_targets is the number of targets, which is a configurable attribute.

## Args

* `X`: Input 2D tensor.
* `nodes_splits`: Thresholds to do the splitting on for each node with mode that is not 'BRANCH_MEMBER'.
* `nodes_featureids`: Feature id for each node.
* `nodes_modes`: The comparison operation performed by the node. This is encoded as an enumeration of 'NODE_MODE::LEQ', 'NODE_MODE::LT', 'NODE_MODE::GTE', 'NODE_MODE::GT', 'NODE_MODE::EQ', 'NODE_MODE::NEQ', and 'NODE_MODE::MEMBER'
* `nodes_truenodeids`: If `nodes_trueleafs` is 0 (false) at an entry, this represents the position of the true branch node.
* `nodes_falsenodeids`: If `nodes_falseleafs` is 0 (false) at an entry, this represents the position of the false branch node.
* `nodes_trueleafs`: 1 if true branch is leaf for each node and 0 an interior node.
* `nodes_falseleafs`: 1 if true branch is leaf for each node and 0 an interior node.
* `leaf_targetids`: The index of the target that this leaf contributes to (this must be in range `[0, n_targets)`).
* `leaf_weights`: The weight for each leaf.
* `tree_roots`: Index into `nodes_*` for the root of each tree. The tree structure is derived from the branching of each node.
* `post_transform`: Indicates the transform to apply to the score.One of 'POST_TRANSFORM::NONE', 'POST_TRANSFORM::SOFTMAX', 'POST_TRANSFORM::LOGISTIC', 'POST_TRANSFORM::SOFTMAX_ZERO' or 'POST_TRANSFORM::PROBIT' ,
* `aggregate_function`: Defines how to aggregate leaf values within a target. One of 'AGGREGATE_FUNCTION::AVERAGE', 'AGGREGATE_FUNCTION::SUM', 'AGGREGATE_FUNCTION::MIN', 'AGGREGATE_FUNCTION::MAX` defaults to 'AGGREGATE_FUNCTION::SUM'
* `nodes_hitrates`: Popularity of each node, used for performance and may be omitted.
* `nodes_missing_value_tracks_true`: For each node, define whether to follow the true branch (if attribute value is 1) or false branch (if attribute value is 0) in the presence of a NaN input feature. This attribute may be left undefined and the default value is false (0) for all nodes.
* `membership_values`: Members to test membership of for each set membership node. List all of the members to test again in the order that the 'BRANCH_MEMBER' mode appears in `node_modes`, delimited by `NaN`s. Will have the same number of sets of values as nodes with mode 'BRANCH_MEMBER'. This may be omitted if the node doesn't contain any 'BRANCH_MEMBER' nodes.
* `n_targets`: The total number of targets.


## Returns

* Output of shape [Batch Size, Number of targets]

## Type Constraints

`TreeEnsembleClassifier` and `X` must be fixed points

## Examples

```rust
use orion::numbers::FP16x16;
use orion::operators::tensor::{Tensor, TensorTrait, FP16x16Tensor, U32Tensor};
use orion::operators::ml::{TreeEnsembleTrait,POST_TRANSFORM, AGGREGATE_FUNCTION, NODE_MODE};
use orion::operators::matrix::{MutMatrix, MutMatrixImpl};
use orion::numbers::NumberTrait;

fn example_tree_ensemble_one_tree() -> MutMatrix::<FP16x16> {
let mut shape = ArrayTrait::<usize>::new();
shape.append(3);
shape.append(2);

let mut data = ArrayTrait::new();
data.append(FP16x16 { mag: 78643, sign: false });
data.append(FP16x16 { mag: 222822, sign: false });
data.append(FP16x16 { mag: 7864, sign: true });
data.append(FP16x16 { mag: 108789, sign: false });
data.append(FP16x16 { mag: 271319, sign: false });
data.append(FP16x16 { mag: 115998, sign: false });
let mut X = TensorTrait::new(shape.span(), data.span());

let mut shape = ArrayTrait::<usize>::new();
shape.append(4);

let mut data = ArrayTrait::new();
data.append(FP16x16 { mag: 342753, sign: false });
data.append(FP16x16 { mag: 794296, sign: false });
data.append(FP16x16 { mag: 801505, sign: true });
data.append(FP16x16 { mag: 472514, sign: false });
let leaf_weights = TensorTrait::new(shape.span(), data.span());

let mut shape = ArrayTrait::<usize>::new();
shape.append(3);

let mut data = ArrayTrait::new();
data.append(FP16x16 { mag: 205783, sign: false });
data.append(FP16x16 { mag: 78643, sign: false });
data.append(FP16x16 { mag: 275251, sign: false });
let nodes_splits = TensorTrait::new(shape.span(), data.span());

let membership_values = Option::None;

let n_targets = 2;
let aggregate_function = AGGREGATE_FUNCTION::SUM;
let nodes_missing_value_tracks_true = Option::None;
let nodes_hitrates = Option::None;
let post_transform = POST_TRANSFORM::NONE;

let tree_roots: Span<usize> = array![0].span();
let nodes_modes: Span<MODE> = array![MODE::LEQ, MODE::LEQ, MODE::LEQ].span();

let nodes_featureids: Span<usize> = array![0, 0, 0].span();
let nodes_truenodeids: Span<usize> = array![1, 0, 1].span();
let nodes_trueleafs: Span<usize> = array![0, 1, 1].span();
let nodes_falsenodeids: Span<usize> = array![2, 2, 3].span();
let nodes_falseleafs: Span<usize> = array![0, 1, 1].span();
let leaf_targetids: Span<usize> = array![0, 1, 0, 1].span();

return TreeEnsembleTrait::predict(
@X,
nodes_splits,
nodes_featureids,
nodes_modes,
nodes_truenodeids,
nodes_falsenodeids,
nodes_trueleafs,
nodes_falseleafs,
leaf_targetids,
leaf_weights,
tree_roots,
post_transform,
aggregate_function,
nodes_hitrates,
nodes_missing_value_tracks_true,
membership_values,
n_targets
);
}

>>> [[ 5.23 0. ]
[ 5.23 0. ]
[ 0. 12.12]]
```
152 changes: 152 additions & 0 deletions docs/framework/operators/neural-network/nn.deform_conv.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
# NNTrait::deform_conv

```rust
fn deform_conv(
X: @Tensor<T>,
W: @Tensor<T>,
offset: @Tensor<T>,
B: Option<Span<T>>,
mask: Option<Tensor<T>>,
dilations: Option<Span<usize>>,
group: Option<usize>,
kernel_shape: Option<Span<usize>>,
offset_group: Option<usize>,
pads: Option<Span<usize>>,
strides: Option<Span<usize>>,
) -> Tensor<T>
```

Performs deformable convolution as described in https://arxiv.org/abs/1703.06211 and https://arxiv.org/abs/1811.11168. This operator specification supports the 2-D case.

## Args

X: @Tensor<T>,
W: @Tensor<T>,
offset: @Tensor<T>,
B: Option<Span<T>>,
mask: Option<Tensor<T>>,
dilations: Option<Span<usize>>,
group: Option<usize>,
kernel_shape: Option<Span<usize>>,
offset_group: Option<usize>,
pads: Option<Span<usize>>,
strides: Option<Span<usize>>,

* `X`(`@Tensor<T>`) - Input data tensor. For 2D image data, it has shape (N, C, H, W) where N is the batch size, C is the number of input channels, and H and W are the height and width.
* `W`(`@Tensor<T>`) - Weight tensor that will be used in the convolutions. It has shape (oC, C/group, kH, kW), where oC is the number of output channels and kH and kW are the kernel height and width.
* `offset`(`@Tensor<T>`) - Offset tensor denoting the offset for the sampling locations in the convolution kernel. It has shape (N, offset_group * kH * kW * 2, oH, oW) for 2D data
* `B`(`Option<Span<T>>`) - Default is a tensor of zeros, optional 1D bias of length oC to be added to the convolution.
* `mask`(`Option<Tensor<T>>`) - Default is a tensor of ones, the mask tensor to be applied to each position in the convolution kernel. It has shape (N, offset_group * kH * kW, oH, oW) for 2D data.
* `dilations`(`Option<Span<usize>>`) - Default is 1 along each axis, dilation value along each spatial axis of the kernel.
* `group`(`usize`) - Default is 1, number of groups the input and output channels, C and oC, are divided into.
* `kernel_shape`(`Option<Span<usize>>`) - Shape of the convolution kernel. If not present, it is inferred from the shape of input W.
* `offset_group`(`Option<usize>`) - Default is 1, number of groups of offset. C must be divisible by offset_group.
* `pads`(`Option<Span<usize>>`) - Default is 0 along each axis, padding for the beginning and end along each spatial axis. The values represent the number of pixels added to the beginning and end of the corresponding axis and can take any nonnegative value.
* `strides`(`Option<Span<usize>>`) - Default is 1 along each axis, stride along each spatial axis.

## Returns

A `Tensor<T>` output tensor that contains the result of convolution.

## Examples

```rust
fn example_deform_conv() -> Tensor<FP16x16> {
let mut shape = ArrayTrait::<usize>::new();
shape.append(1);
shape.append(1);
shape.append(3);
shape.append(3);

let mut data = ArrayTrait::new();
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 65536, sign: false });
data.append(FP16x16 { mag: 131072, sign: false });
data.append(FP16x16 { mag: 196608, sign: false });
data.append(FP16x16 { mag: 262144, sign: false });
data.append(FP16x16 { mag: 327680, sign: false });
data.append(FP16x16 { mag: 393216, sign: false });
data.append(FP16x16 { mag: 458752, sign: false });
data.append(FP16x16 { mag: 524288, sign: false });
let mut X = TensorTrait::new(shape.span(), data.span());

let mut shape = ArrayTrait::<usize>::new();
shape.append(1);
shape.append(1);
shape.append(2);
shape.append(2);

let mut data = ArrayTrait::new();
data.append(FP16x16 { mag: 65536, sign: false });
data.append(FP16x16 { mag: 65536, sign: false });
data.append(FP16x16 { mag: 65536, sign: false });
data.append(FP16x16 { mag: 65536, sign: false });
let mut W = TensorTrait::new(shape.span(), data.span());

let mut shape = ArrayTrait::<usize>::new();
shape.append(1);
shape.append(8);
shape.append(2);
shape.append(2);

let mut data = ArrayTrait::new();
data.append(FP16x16 { mag: 32768, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 6553, sign: true });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
data.append(FP16x16 { mag: 0, sign: false });
let mut offset = TensorTrait::new(shape.span(), data.span());


return NNTrait::deform_conv(
@X,
@W,
@offset,
Option::None,
Option::None,
Option::None,
Option::None,
Option::Some(array![2, 2].span()),
Option::None,
Option::Some(array![0, 0, 0, 0].span()),
Option::None,
);
}

>>> [
[
[
[9.5, 11.9],
[20.0, 24.0],
]
]
]

````
Loading

0 comments on commit c67cb4a

Please sign in to comment.