forked from sthanhng/yoloface
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
158 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
# ******************************************************************* | ||
# | ||
# Author : Thanh Nguyen, 2018 | ||
# Email : [email protected] | ||
# Github : https://github.com/sthanhng | ||
# | ||
# Face detection using the YOLOv3 algorithm | ||
# | ||
# Description : YOLO.py | ||
# Contains methods of YOLO | ||
# | ||
# ******************************************************************* | ||
|
||
import os | ||
import colorsys | ||
import numpy as np | ||
|
||
from yolo.model import eval | ||
from yolo.utils import letterbox_image | ||
|
||
from keras import backend as K | ||
from keras.models import load_model | ||
from timeit import default_timer as timer | ||
from PIL import ImageDraw | ||
|
||
|
||
class YOLO(object): | ||
def __init__(self, args): | ||
self.args = args | ||
self.model_path = args.model | ||
self.classes_path = args.classes | ||
self.anchors_path = args.anchors | ||
self.class_names = self._get_class() | ||
self.anchors = self._get_anchors() | ||
self.sess = K.get_session() | ||
self.boxes, self.scores, self.classes = self._generate() | ||
self.model_image_size = args.img_size | ||
|
||
def _get_class(self): | ||
classes_path = os.path.expanduser(self.classes_path) | ||
with open(classes_path) as f: | ||
class_names = f.readlines() | ||
class_names = [c.strip() for c in class_names] | ||
print(class_names) | ||
return class_names | ||
|
||
def _get_anchors(self): | ||
anchors_path = os.path.expanduser(self.anchors_path) | ||
with open(anchors_path) as f: | ||
anchors = f.readline() | ||
anchors = [float(x) for x in anchors.split(',')] | ||
return np.array(anchors).reshape(-1, 2) | ||
|
||
def _generate(self): | ||
model_path = os.path.expanduser(self.model_path) | ||
assert model_path.endswith( | ||
'.h5'), 'Keras model or weights must be a .h5 file' | ||
|
||
# Load model, or construct model and load weights | ||
num_anchors = len(self.anchors) | ||
num_classes = len(self.class_names) | ||
try: | ||
self.yolo_model = load_model(model_path, compile=False) | ||
except: | ||
# make sure model, anchors and classes match | ||
self.yolo_model.load_weights(self.model_path) | ||
else: | ||
assert self.yolo_model.layers[-1].output_shape[-1] == \ | ||
num_anchors / len(self.yolo_model.output) * ( | ||
num_classes + 5), \ | ||
'Mismatch between model and given anchor and class sizes' | ||
|
||
print( | ||
'[i] ==> {} model, anchors, and classes loaded.'.format(model_path)) | ||
|
||
# Generate colors for drawing bounding boxes | ||
hsv_tuples = [(x / len(self.class_names), 1., 1.) | ||
for x in range(len(self.class_names))] | ||
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) | ||
self.colors = list( | ||
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), | ||
self.colors)) | ||
|
||
# Shuffle colors to decorrelate adjacent classes. | ||
np.random.seed(102) | ||
np.random.shuffle(self.colors) | ||
np.random.seed(None) | ||
|
||
# Generate output tensor targets for filtered bounding boxes. | ||
self.input_image_shape = K.placeholder(shape=(2,)) | ||
boxes, scores, classes = eval(self.yolo_model.output, self.anchors, | ||
len(self.class_names), | ||
self.input_image_shape, | ||
score_threshold=self.args.score, | ||
iou_threshold=self.args.iou) | ||
return boxes, scores, classes | ||
|
||
def detect_image(self, image): | ||
start_time = timer() | ||
|
||
if self.model_image_size != (None, None): | ||
assert self.model_image_size[ | ||
0] % 32 == 0, 'Multiples of 32 required' | ||
assert self.model_image_size[ | ||
1] % 32 == 0, 'Multiples of 32 required' | ||
boxed_image = letterbox_image(image, tuple( | ||
reversed(self.model_image_size))) | ||
else: | ||
new_image_size = (image.width - (image.width % 32), | ||
image.height - (image.height % 32)) | ||
boxed_image = letterbox_image(image, new_image_size) | ||
image_data = np.array(boxed_image, dtype='float32') | ||
|
||
print(image_data.shape) | ||
image_data /= 255. | ||
# Add batch dimension | ||
image_data = np.expand_dims(image_data, 0) | ||
|
||
out_boxes, out_scores, out_classes = self.sess.run( | ||
[self.boxes, self.scores, self.classes], | ||
feed_dict={ | ||
self.yolo_model.input: image_data, | ||
self.input_image_shape: [image.size[1], image.size[0]], | ||
K.learning_phase(): 0 | ||
}) | ||
|
||
print('[i] ==> Found {} face(s) for this image'.format(len(out_boxes))) | ||
thickness = (image.size[0] + image.size[1]) // 400 | ||
|
||
for i, c in reversed(list(enumerate(out_classes))): | ||
predicted_class = self.class_names[c] | ||
box = out_boxes[i] | ||
score = out_scores[i] | ||
|
||
text = '{} {:.2f}'.format(predicted_class, score) | ||
draw = ImageDraw.Draw(image) | ||
|
||
top, left, bottom, right = box | ||
top = max(0, np.floor(top + 0.5).astype('int32')) | ||
left = max(0, np.floor(left + 0.5).astype('int32')) | ||
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32')) | ||
right = min(image.size[0], np.floor(right + 0.5).astype('int32')) | ||
|
||
print(text, (left, top), (right, bottom)) | ||
|
||
for thk in range(thickness): | ||
draw.rectangle( | ||
[left + thk, top + thk, right - thk, bottom - thk], | ||
outline=self.colors[c]) | ||
del draw | ||
|
||
end_time = timer() | ||
print('[i] ==> Processing time: {:.2f}ms'.format((end_time - | ||
start_time) * 1000)) | ||
return image | ||
|
||
def close_session(self): | ||
self.sess.close() |