forked from sthanhng/yoloface
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
140 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
# ******************************************************************* | ||
# | ||
# Author : Thanh Nguyen, 2018 | ||
# Email : [email protected] | ||
# Github : https://github.com/sthanhng | ||
# | ||
# Face detection using the YOLOv3 algorithm | ||
# | ||
# Description : model.py | ||
# The YOLOv3 model defined in Keras framework | ||
# | ||
# ******************************************************************* | ||
|
||
import tensorflow as tf | ||
|
||
from keras import backend as K | ||
|
||
|
||
def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False): | ||
'''Convert final layer features to bounding box parameters''' | ||
|
||
num_anchors = len(anchors) | ||
|
||
# Reshape to batch, height, width, num_anchors, box_params. | ||
anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2]) | ||
|
||
# height, width | ||
grid_shape = K.shape(feats)[1:3] | ||
grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]), | ||
[1, grid_shape[1], 1, 1]) | ||
grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]), | ||
[grid_shape[0], 1, 1, 1]) | ||
grid = K.concatenate([grid_x, grid_y]) | ||
grid = K.cast(grid, K.dtype(feats)) | ||
|
||
feats = K.reshape( | ||
feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5]) | ||
|
||
# Adjust preditions to each spatial grid point and anchor size. | ||
box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], | ||
K.dtype(feats)) | ||
box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], | ||
K.dtype(feats)) | ||
box_confidence = K.sigmoid(feats[..., 4:5]) | ||
box_class_probs = K.sigmoid(feats[..., 5:]) | ||
|
||
if calc_loss == True: | ||
return grid, feats, box_xy, box_wh | ||
return box_xy, box_wh, box_confidence, box_class_probs | ||
|
||
|
||
def correct_boxes(box_xy, box_wh, input_shape, image_shape): | ||
'''Get corrected boxes''' | ||
|
||
box_yx = box_xy[..., ::-1] | ||
box_hw = box_wh[..., ::-1] | ||
input_shape = K.cast(input_shape, K.dtype(box_yx)) | ||
image_shape = K.cast(image_shape, K.dtype(box_yx)) | ||
new_shape = K.round(image_shape * K.min(input_shape / image_shape)) | ||
offset = (input_shape - new_shape) / 2. / input_shape | ||
scale = input_shape / new_shape | ||
box_yx = (box_yx - offset) * scale | ||
box_hw *= scale | ||
|
||
box_mins = box_yx - (box_hw / 2.) | ||
box_maxes = box_yx + (box_hw / 2.) | ||
boxes = K.concatenate([ | ||
box_mins[..., 0:1], # y_min | ||
box_mins[..., 1:2], # x_min | ||
box_maxes[..., 0:1], # y_max | ||
box_maxes[..., 1:2] # x_max | ||
]) | ||
|
||
# Scale boxes back to original image shape. | ||
boxes *= K.concatenate([image_shape, image_shape]) | ||
return boxes | ||
|
||
|
||
def boxes_and_scores(feats, anchors, num_classes, input_shape, | ||
image_shape): | ||
'''Process Convolutional layer output''' | ||
|
||
box_xy, box_wh, box_confidence, box_class_probs = yolo_head(feats, | ||
anchors, | ||
num_classes, | ||
input_shape) | ||
boxes = correct_boxes(box_xy, box_wh, input_shape, image_shape) | ||
boxes = K.reshape(boxes, [-1, 4]) | ||
box_scores = box_confidence * box_class_probs | ||
box_scores = K.reshape(box_scores, [-1, num_classes]) | ||
return boxes, box_scores | ||
|
||
|
||
def eval(outputs, anchors, num_classes, image_shape, | ||
max_boxes=20, score_threshold=.6, iou_threshold=.5): | ||
'''Evaluate the YOLO model on given input and return filtered boxes''' | ||
|
||
num_layers = len(outputs) | ||
anchor_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]] if num_layers == 3 else [ | ||
[3, 4, 5], [1, 2, 3]] | ||
input_shape = K.shape(outputs[0])[1:3] * 32 | ||
boxes = [] | ||
box_scores = [] | ||
|
||
for l in range(num_layers): | ||
_boxes, _box_scores = boxes_and_scores(outputs[l], | ||
anchors[anchor_mask[l]], | ||
num_classes, input_shape, | ||
image_shape) | ||
boxes.append(_boxes) | ||
box_scores.append(_box_scores) | ||
|
||
boxes = K.concatenate(boxes, axis=0) | ||
box_scores = K.concatenate(box_scores, axis=0) | ||
|
||
mask = box_scores >= score_threshold | ||
max_boxes_tensor = K.constant(max_boxes, dtype='int32') | ||
boxes_ = [] | ||
scores_ = [] | ||
classes_ = [] | ||
|
||
for c in range(num_classes): | ||
# TODO: use Keras backend instead of tf. | ||
class_boxes = tf.boolean_mask(boxes, mask[:, c]) | ||
class_box_scores = tf.boolean_mask(box_scores[:, c], mask[:, c]) | ||
nms_index = tf.image.non_max_suppression( | ||
class_boxes, class_box_scores, max_boxes_tensor, | ||
iou_threshold=iou_threshold) | ||
class_boxes = K.gather(class_boxes, nms_index) | ||
class_box_scores = K.gather(class_box_scores, nms_index) | ||
classes = K.ones_like(class_box_scores, 'int32') * c | ||
boxes_.append(class_boxes) | ||
scores_.append(class_box_scores) | ||
classes_.append(classes) | ||
|
||
boxes_ = K.concatenate(boxes_, axis=0) | ||
scores_ = K.concatenate(scores_, axis=0) | ||
classes_ = K.concatenate(classes_, axis=0) | ||
|
||
return boxes_, scores_, classes_ |