-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Duplicate lcube.r in main for preliminary publishing
- Loading branch information
Showing
1 changed file
with
74 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,74 @@ | ||
# script that provides a list of IDs for an LCUBE subsample of sequences | ||
# Input: a CSV file with columns "id", "lat", "lng", and "date"; a fasta file with sequences and ids that match the CSV file | ||
# Output: a CSV file with columns "id", "lat", "lng", and "date" for the LCUBE subsample; a fasta file with sequences and ids that match the subsample CSV file | ||
|
||
# Load necessary libraries | ||
library(BalancedSampling) | ||
library(phangorn) | ||
library(dplyr) | ||
# library(geonames) | ||
library(stringr) | ||
|
||
# Load command line arguments into variables | ||
args <- commandArgs(trailingOnly = TRUE) | ||
in_csv <- args[1] | ||
id_col <- args[2] | ||
date_col <- args[3] | ||
in_fasta <- args[4] | ||
out_csv <- args[5] | ||
n <- as.integer(args[6]) | ||
seed <- as.integer(args[7]) | ||
|
||
# Adding some hard-coded testing comments because as an academic, I can get away with it | ||
# in_csv<-"../test_files/HA_NorthAmerica_202401-20240507.csv" | ||
# id_col <- "id" | ||
# date_col <- "Collection_Date" | ||
# in_fasta <- "../test_files/HA_NorthAmerica_202401-20240507.aligned.fasta" | ||
# out_csv <- "../test_files/HA_NorthAmerica_202401-20240507_lcube.csv" | ||
# n <- 100 | ||
# seed <- 12 | ||
|
||
# Read in the CSV and FASTA files | ||
metadata <- read.csv(in_csv, header = TRUE, stringsAsFactors = FALSE) | ||
fasta <- read.dna(in_fasta, as.character=TRUE, format="fasta", as.matrix=TRUE) | ||
fa <- as.phyDat(fasta) | ||
distance <- dist.hamming(fa) | ||
metadata <- metadata[match(names(fa), metadata[,id_col]),] | ||
|
||
# Set the seed for reproducibility | ||
set.seed(seed) | ||
|
||
# Get the number of sequences in the FASTA file | ||
N <- length(fa) | ||
|
||
# get temporal distance matrix and collect lat long vals | ||
temporal<- c() | ||
for (i in 1:nrow(metadata)) { | ||
temporal<- c(temporal, as.numeric(difftime(as.Date(metadata$Collection_Date[i], | ||
tryFormats = c("%Y-%m-%d", "%Y-%m", "%Y")), | ||
as.Date("2020-01-01"), unit="days")) / 365) | ||
} | ||
metadata$timediff <- temporal | ||
# metadata$lat<-as.numeric(metadata$lat) | ||
# metadata$lng<-as.numeric(metadata$lng) | ||
|
||
# bind distance matrices together | ||
matr = as.matrix(distance) | ||
# selected_columns <- sample(ncol(matr), 4) # This chunk is commented out, but | ||
# matr[, selected_columns] # left in case we need to speed things up. | ||
matr<-cbind(matr, select(metadata, -c(date_col, id_col))) | ||
matr<- scale(matr) | ||
|
||
# scream if there is an NA | ||
if(any(is.na(matr))) { | ||
stop("Error: The matrix contains NA values.") | ||
} | ||
|
||
# get the LCUBE subsample | ||
p = rep(n/N, N) | ||
s = lcube(p, matr, cbind(p)) | ||
# print("outputting results...") | ||
|
||
# write out the metadata from the subsample and the corresponding FASTA sequences | ||
write.csv(metadata[s,], out_csv, row.names = FALSE) | ||
write.dna(fasta[s,], file = str_replace(in_fasta, ".fasta", ".lcube.fasta"), format = "fasta") |