This fork addresses numerical stability issues of the original implementation. Calculation is moved to log-space.
Implementation of the paper: 'Robust mixture modelling using the t distribution', D. Peel and G. J. McLachlan.
- Only Python >= 3.7 supported.
- Code coverage: 76%.
$ python3 -m pip install smm --user
$ git clone https://github.com/luiscarlosgph/t-Student-Mixture-Models.git
$ cd t-Student-Mixture-Models
$ python3 setup.py install --user
See example in src/example.py.
$ python3 src/example.py
To run the tests execute:
$ python3 setup.py test
To run the coverage test:
$ python3 -m pip install coverage
$ python3 -m coverage run setup.py test
$ python3 -m coverage html
Then open 'htmlcov/index.html' and search for the line containing 'smm/smm.py'.
See t-Student-Mixture-Models documentation.
Luis Carlos Garcia-Peraza Herrera ([email protected]).
BSD 3-Clause License, see LICENSE file for more information.