Skip to content

根据隐马尔科夫原理,依据Q-learning的加强学习算法, 构建一个能够自学习交通规则 并且能够经过加强学习训练之后 找到最佳规划路线 并且能在规定时间到达. 目前优化后的成功率达到99%. 这个是自动驾驶路线规划的重要部分.

Notifications You must be signed in to change notification settings

gumplus/Sefl-Driving_Taxi_Qlearning

Repository files navigation

Use Q-learning to train a smart taxi to dirve in the best way and obeyed on the traffic lights

Get a best score 99% to arrive the destination finally

According to the principle of Q-learning and Hidden Markov, using reinforcement learning algorithms, I have built a self-learning smart taxi agent obeying traffic rules and doing automatic route planning itself.

After the strengthen training and some grid_search optimization , the agent can find the best route and arrive in time mostly. After some optimization , the success rate raised to 99%.

About

根据隐马尔科夫原理,依据Q-learning的加强学习算法, 构建一个能够自学习交通规则 并且能够经过加强学习训练之后 找到最佳规划路线 并且能在规定时间到达. 目前优化后的成功率达到99%. 这个是自动驾驶路线规划的重要部分.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published