The goal of this repo is to re-implement the amazing work of Yan Wang et al. for Anytime Stereo Image Depth Estimation on Mobile Devices. Original code and paper could be found via the following links:
This repo support pytorch 1.10.0+
- build residual cost volume
- The reason we can see this issue.
- refine network without spn
We pretrain our model on SceneFlow dataset for 10 epochs.
pretrained script
python main.py --save_path results/pretrained_anynet_refine \
--with_refine \
--datapath your_path
We finetune our model on KITTI 2015 dataset for 300 epochs. Split 80% data for training and 20% for validation.
finetune KITTI 2015 script
python finetune.py --save_path results/finetune_anynet_refine \
--pretrained results/pretrained_anynet_refine/checkpoint.tar \
--with_refine \
--datapath your_path \
--datatype 2015 \
--split_file dataset/KITTI2015_val.txt
We finetune our model on KITTI 2012 dataset for 300 epochs. Split 80% data for training and 20% for validation.
finetune KITTI 2012 script
python finetune.py --save_path results/finetune_anynet_refine_2012 \
--pretrained results/pretrained_anynet_refine/checkpoint.tar \
--with_refine \
--datapath your_path \
--datatype 2012 \
--split_file dataset/KITTI2012_val.txt
Dataset | Stage 1 | Stage 2 | Stage 3 | Stage 4 |
---|---|---|---|---|
KITTI 2012 | 16.86% | 10.68% | 7.15% | 7.15% |
KITTI 2015 | 16.57% | 10.58% | 6.33% | 6.16% |
Stage 1 | Stage 2 | Stage 3 | Stage 4 | |
---|---|---|---|---|
Runtime | 5.3ms | 8.45ms | 11.1ms | 11.4ms |