STESH: A Spatial Domain Recognition Method for Integrating Spatial Transcriptome Multimodal Information Based on Graph Deep Learning
Identifying spatial domains is the first important step in spatial transcriptomics (ST). Histological information can provide insights beyond gene expression profiles. To make the most of this information, we propose STESH, a spatial transcriptomic clustering approach that combines gene expression, spatial information, and histology. STESH uses graph convolutional neural networks to extract histological features and generate expression, histological, spatial, and collaborative convolution modules for multi-view graph convolutional networks with decoders and attention mechanisms. The test results show that STESH outperforms other algorithms in most cases.
git clone https://github.com/haojingshao/STESH.git
cd STESH
conda create -n STESH_env python=3.9
conda activate STESH_env
To run STESH, you need the following dependencies:
- Python==3.9.17
- R==4.2.0
- scanpy==1.9.4
- numpy==1.23.4
- pandas==2.1.0
- matplotlib==3.7.2
- scikit-learn==1.3.0
- scipy==1.9.1
- anndata==0.9.2
- Pillow==10.0.0
- opencv-python==4.8.0.76
- python-louvain==0.16
- rpy2==3.5.14
- torch==1.9.1+cu111
- torchvision==0.10.1+cu111
- torch_geometric==2.4.0
- torch-sparse==0.6.12
- torch-scatter==2.0.9
- tqdm==4.66.1
pip install ipykernel
python -m ipykernel install --user --name=STESH_env
We take 10X sample 151672 as a running example.
- The tutorial can be found in
STESH-main/DLPFC_tutorial.py
. - The results can be viewed in the
DLPFC
folder under theresult
folder.