Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
profvjreddi committed Sep 30, 2023
1 parent b3c9985 commit db0ea5d
Show file tree
Hide file tree
Showing 35 changed files with 375 additions and 163 deletions.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
a2f45856
9246de34
14 changes: 10 additions & 4 deletions about.html
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

<meta name="keywords" content="open-source, embedded systems, machine learning, tinyML">

<title>Machine Learning Systems for TinyML - About the Book</title>
<title>MACHINE LEARNING SYSTEMS for TinyML - About the Book</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
Expand Down Expand Up @@ -92,20 +92,20 @@
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Machine Learning Systems for TinyML</a>
<a href="./">MACHINE LEARNING SYSTEMS for TinyML</a>
<div class="sidebar-tools-main tools-wide">
<a href="https://github.com/harvard-edge/cs249r_book" rel="" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
<div class="dropdown">
<a href="" title="Download" id="quarto-navigation-tool-dropdown-0" class="quarto-navigation-tool dropdown-toggle px-1" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download"><i class="bi bi-download"></i></a>
<ul class="dropdown-menu" aria-labelledby="quarto-navigation-tool-dropdown-0">
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.pdf">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.pdf">
<i class="bi bi-bi-file-pdf pe-1"></i>
Download PDF
</a>
</li>
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.epub">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.epub">
<i class="bi bi-bi-journal pe-1"></i>
Download ePub
</a>
Expand Down Expand Up @@ -393,6 +393,12 @@ <h1 class="title">About the Book</h1>

</div>

<div>
<div class="abstract">
<div class="abstract-title">Abstract</div>
Machine Learning Systems for TinyML offers comprehensive guidance on deploying machine learning on embedded devices. As edge computing and the Internet of Things proliferate, this textbook provides professionals and students the expertise to implement performant AI on resource-constrained hardware. A unique aspect of this book elucidates the entire machine learning workflow, from data engineering through training, optimization, acceleration, and production deployment. Key topics covered include deep learning and classical ML algorithms for embedded systems, efficient neural network architectures, hardware-aware training techniques, model compression, benchmarking for tinyML, and on-device learning. Additional chapters highlight cutting-edge advances like on-device data generation and crucial considerations around reliability, privacy, security, and responsible AI. With its rigorous approach spanning theory and practice across diverse tinyML application domains like smart homes, wearables, and industrial IoT, the book enables readers to develop specialized knowledge. Using concrete use cases and hands-on examples, readers will learn to apply machine learning to transform embedded and IoT systems. Overall, this indispensable guide provides a research-based foundation for leveraging machine learning in embedded systems.
</div>
</div>

</header>

Expand Down
14 changes: 10 additions & 4 deletions acknowledgements.html
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

<meta name="keywords" content="open-source, embedded systems, machine learning, tinyML">

<title>Machine Learning Systems for TinyML - Acknowledgements</title>
<title>MACHINE LEARNING SYSTEMS for TinyML - Acknowledgements</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
Expand Down Expand Up @@ -92,20 +92,20 @@
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Machine Learning Systems for TinyML</a>
<a href="./">MACHINE LEARNING SYSTEMS for TinyML</a>
<div class="sidebar-tools-main tools-wide">
<a href="https://github.com/harvard-edge/cs249r_book" rel="" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
<div class="dropdown">
<a href="" title="Download" id="quarto-navigation-tool-dropdown-0" class="quarto-navigation-tool dropdown-toggle px-1" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download"><i class="bi bi-download"></i></a>
<ul class="dropdown-menu" aria-labelledby="quarto-navigation-tool-dropdown-0">
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.pdf">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.pdf">
<i class="bi bi-bi-file-pdf pe-1"></i>
Download PDF
</a>
</li>
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.epub">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.epub">
<i class="bi bi-bi-journal pe-1"></i>
Download ePub
</a>
Expand Down Expand Up @@ -383,6 +383,12 @@ <h1 class="title">Acknowledgements</h1>

</div>

<div>
<div class="abstract">
<div class="abstract-title">Abstract</div>
Machine Learning Systems for TinyML offers comprehensive guidance on deploying machine learning on embedded devices. As edge computing and the Internet of Things proliferate, this textbook provides professionals and students the expertise to implement performant AI on resource-constrained hardware. A unique aspect of this book elucidates the entire machine learning workflow, from data engineering through training, optimization, acceleration, and production deployment. Key topics covered include deep learning and classical ML algorithms for embedded systems, efficient neural network architectures, hardware-aware training techniques, model compression, benchmarking for tinyML, and on-device learning. Additional chapters highlight cutting-edge advances like on-device data generation and crucial considerations around reliability, privacy, security, and responsible AI. With its rigorous approach spanning theory and practice across diverse tinyML application domains like smart homes, wearables, and industrial IoT, the book enables readers to develop specialized knowledge. Using concrete use cases and hands-on examples, readers will learn to apply machine learning to transform embedded and IoT systems. Overall, this indispensable guide provides a research-based foundation for leveraging machine learning in embedded systems.
</div>
</div>

</header>

Expand Down
14 changes: 10 additions & 4 deletions ai_for_good.html
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

<meta name="keywords" content="open-source, embedded systems, machine learning, tinyML">

<title>Machine Learning Systems for TinyML - 18&nbsp; AI for Good</title>
<title>MACHINE LEARNING SYSTEMS for TinyML - 18&nbsp; AI for Good</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
Expand Down Expand Up @@ -92,20 +92,20 @@
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Machine Learning Systems for TinyML</a>
<a href="./">MACHINE LEARNING SYSTEMS for TinyML</a>
<div class="sidebar-tools-main tools-wide">
<a href="https://github.com/harvard-edge/cs249r_book" rel="" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
<div class="dropdown">
<a href="" title="Download" id="quarto-navigation-tool-dropdown-0" class="quarto-navigation-tool dropdown-toggle px-1" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download"><i class="bi bi-download"></i></a>
<ul class="dropdown-menu" aria-labelledby="quarto-navigation-tool-dropdown-0">
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.pdf">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.pdf">
<i class="bi bi-bi-file-pdf pe-1"></i>
Download PDF
</a>
</li>
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.epub">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.epub">
<i class="bi bi-bi-journal pe-1"></i>
Download ePub
</a>
Expand Down Expand Up @@ -399,6 +399,12 @@ <h1 class="title"><span class="chapter-number">18</span>&nbsp; <span class="chap

</div>

<div>
<div class="abstract">
<div class="abstract-title">Abstract</div>
Machine Learning Systems for TinyML offers comprehensive guidance on deploying machine learning on embedded devices. As edge computing and the Internet of Things proliferate, this textbook provides professionals and students the expertise to implement performant AI on resource-constrained hardware. A unique aspect of this book elucidates the entire machine learning workflow, from data engineering through training, optimization, acceleration, and production deployment. Key topics covered include deep learning and classical ML algorithms for embedded systems, efficient neural network architectures, hardware-aware training techniques, model compression, benchmarking for tinyML, and on-device learning. Additional chapters highlight cutting-edge advances like on-device data generation and crucial considerations around reliability, privacy, security, and responsible AI. With its rigorous approach spanning theory and practice across diverse tinyML application domains like smart homes, wearables, and industrial IoT, the book enables readers to develop specialized knowledge. Using concrete use cases and hands-on examples, readers will learn to apply machine learning to transform embedded and IoT systems. Overall, this indispensable guide provides a research-based foundation for leveraging machine learning in embedded systems.
</div>
</div>

</header>

Expand Down
14 changes: 10 additions & 4 deletions benchmarking.html
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

<meta name="keywords" content="open-source, embedded systems, machine learning, tinyML">

<title>Machine Learning Systems for TinyML - 12&nbsp; Benchmarking AI</title>
<title>MACHINE LEARNING SYSTEMS for TinyML - 12&nbsp; Benchmarking AI</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
Expand Down Expand Up @@ -92,20 +92,20 @@
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Machine Learning Systems for TinyML</a>
<a href="./">MACHINE LEARNING SYSTEMS for TinyML</a>
<div class="sidebar-tools-main tools-wide">
<a href="https://github.com/harvard-edge/cs249r_book" rel="" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
<div class="dropdown">
<a href="" title="Download" id="quarto-navigation-tool-dropdown-0" class="quarto-navigation-tool dropdown-toggle px-1" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download"><i class="bi bi-download"></i></a>
<ul class="dropdown-menu" aria-labelledby="quarto-navigation-tool-dropdown-0">
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.pdf">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.pdf">
<i class="bi bi-bi-file-pdf pe-1"></i>
Download PDF
</a>
</li>
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.epub">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.epub">
<i class="bi bi-bi-journal pe-1"></i>
Download ePub
</a>
Expand Down Expand Up @@ -398,6 +398,12 @@ <h1 class="title"><span class="chapter-number">12</span>&nbsp; <span class="chap

</div>

<div>
<div class="abstract">
<div class="abstract-title">Abstract</div>
Machine Learning Systems for TinyML offers comprehensive guidance on deploying machine learning on embedded devices. As edge computing and the Internet of Things proliferate, this textbook provides professionals and students the expertise to implement performant AI on resource-constrained hardware. A unique aspect of this book elucidates the entire machine learning workflow, from data engineering through training, optimization, acceleration, and production deployment. Key topics covered include deep learning and classical ML algorithms for embedded systems, efficient neural network architectures, hardware-aware training techniques, model compression, benchmarking for tinyML, and on-device learning. Additional chapters highlight cutting-edge advances like on-device data generation and crucial considerations around reliability, privacy, security, and responsible AI. With its rigorous approach spanning theory and practice across diverse tinyML application domains like smart homes, wearables, and industrial IoT, the book enables readers to develop specialized knowledge. Using concrete use cases and hands-on examples, readers will learn to apply machine learning to transform embedded and IoT systems. Overall, this indispensable guide provides a research-based foundation for leveraging machine learning in embedded systems.
</div>
</div>

</header>

Expand Down
14 changes: 10 additions & 4 deletions case_studies.html
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

<meta name="keywords" content="open-source, embedded systems, machine learning, tinyML">

<title>Machine Learning Systems for TinyML - Appendix F: Case Studies</title>
<title>MACHINE LEARNING SYSTEMS for TinyML - Appendix F: Case Studies</title>
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
Expand Down Expand Up @@ -91,20 +91,20 @@
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal sidebar-navigation floating overflow-auto">
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Machine Learning Systems for TinyML</a>
<a href="./">MACHINE LEARNING SYSTEMS for TinyML</a>
<div class="sidebar-tools-main tools-wide">
<a href="https://github.com/harvard-edge/cs249r_book" rel="" title="Source Code" class="quarto-navigation-tool px-1" aria-label="Source Code"><i class="bi bi-github"></i></a>
<div class="dropdown">
<a href="" title="Download" id="quarto-navigation-tool-dropdown-0" class="quarto-navigation-tool dropdown-toggle px-1" data-bs-toggle="dropdown" aria-expanded="false" aria-label="Download"><i class="bi bi-download"></i></a>
<ul class="dropdown-menu" aria-labelledby="quarto-navigation-tool-dropdown-0">
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.pdf">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.pdf">
<i class="bi bi-bi-file-pdf pe-1"></i>
Download PDF
</a>
</li>
<li>
<a class="dropdown-item sidebar-tools-main-item" href="./Machine-Learning-Systems-for-TinyML.epub">
<a class="dropdown-item sidebar-tools-main-item" href="./MACHINE-LEARNING-SYSTEMS-for-TinyML.epub">
<i class="bi bi-bi-journal pe-1"></i>
Download ePub
</a>
Expand Down Expand Up @@ -382,6 +382,12 @@ <h1 class="title">Appendix F: Case Studies</h1>

</div>

<div>
<div class="abstract">
<div class="abstract-title">Abstract</div>
Machine Learning Systems for TinyML offers comprehensive guidance on deploying machine learning on embedded devices. As edge computing and the Internet of Things proliferate, this textbook provides professionals and students the expertise to implement performant AI on resource-constrained hardware. A unique aspect of this book elucidates the entire machine learning workflow, from data engineering through training, optimization, acceleration, and production deployment. Key topics covered include deep learning and classical ML algorithms for embedded systems, efficient neural network architectures, hardware-aware training techniques, model compression, benchmarking for tinyML, and on-device learning. Additional chapters highlight cutting-edge advances like on-device data generation and crucial considerations around reliability, privacy, security, and responsible AI. With its rigorous approach spanning theory and practice across diverse tinyML application domains like smart homes, wearables, and industrial IoT, the book enables readers to develop specialized knowledge. Using concrete use cases and hands-on examples, readers will learn to apply machine learning to transform embedded and IoT systems. Overall, this indispensable guide provides a research-based foundation for leveraging machine learning in embedded systems.
</div>
</div>

</header>

Expand Down
Loading

0 comments on commit db0ea5d

Please sign in to comment.