Skip to content

Commit

Permalink
Update workflow.qmd
Browse files Browse the repository at this point in the history
  • Loading branch information
profvjreddi committed Sep 22, 2023
1 parent b2525ea commit f237647
Showing 1 changed file with 47 additions and 105 deletions.
152 changes: 47 additions & 105 deletions workflow.qmd
Original file line number Diff line number Diff line change
@@ -1,126 +1,68 @@
# AI Workflow

In this chapter, we're going to learn about the machine learning workflow. It will set the stages for the later chapters that dive into the details. But to prevent ourselves from missing the forest for the trees, this chapter gives a high level overview of the stpes involved in the ML workflow.
In this chapter, we'll explore the machine learning (ML) workflow, setting the stage for subsequent chapters that delve into the specifics. To ensure we don't lose sight of the bigger picture, this chapter offers a high-level overview of the steps involved in the ML workflow.

The ML workflow is a systematic and structured approach that guides professionals and researchers in developing, deploying, and maintaining ML models. This workflow is generally delineated into several critical stages, each contributing towards the effective development of intelligent systems.

Here's a broad outline of the stages involved:
The ML workflow is a structured approach that guides professionals and researchers through the process of developing, deploying, and maintaining ML models. This workflow is generally divided into several crucial stages, each contributing to the effective development of intelligent systems.

## Overview

A machine learning (ML) workflow is the process of developing, deploying, and maintaining ML models. It typically consists of the following steps:
An ML workflow is a systematic process that encompasses the development, deployment, and maintenance of ML models. The typical steps involved are:

1. **Define the problem.** What are you trying to achieve with your ML model? Do you want to classify images, predict customer churn, or generate text? Once you have a clear understanding of the problem, you can start to collect data and choose a suitable ML algorithm.
2. **Collect and prepare data.** ML models are trained on data, so it's important to collect a high-quality dataset that is representative of the real-world problem you're trying to solve. Once you have your data, you need to clean it and prepare it for training. This may involve tasks such as removing outliers, imputing missing values, and scaling features.
3. **Choose an ML algorithm.** There are many different ML algorithms available, each with its own strengths and weaknesses. The best algorithm for your project will depend on the type of data you have and the problem you're trying to solve.
4. **Train the model.** Once you have chosen an ML algorithm, you need to train the model on your prepared data. This process can take some time, depending on the size and complexity of your dataset.
5. **Evaluate the model.** Once the model is trained, you need to evaluate its performance on a held-out test set. This will give you an idea of how well the model will generalize to new data.
6. **Deploy the model.** Once you're satisfied with the performance of the model, you can deploy it to production. This may involve integrating the model into a software application or making it available as a web service.
7. **Monitor and maintain the model.** Once the model is deployed, you need to monitor its performance and make updates as needed. This is because the real world is constantly changing, and your model may need to be updated to reflect these changes.
1. **Problem Definition**: Clearly define the problem you aim to solve with your ML model, whether it's image classification, customer churn prediction, or text generation. This clarity sets the stage for data collection and algorithm selection.
2. **Data Collection and Preparation**: Gather a high-quality dataset that accurately represents the problem at hand. Data cleaning and preparation are essential steps, which may include outlier removal, missing value imputation, and feature scaling.
3. **Algorithm Selection**: Choose an ML algorithm that aligns with your data type and problem. Various algorithms have their own pros and cons, making the selection critical.
4. **Model Training**: Train your chosen ML algorithm on the prepared dataset. The duration of this process can vary based on dataset size and complexity.
5. **Model Evaluation**: Assess the model's performance using a separate test set to gauge its generalization capabilities.
6. **Model Deployment**: Integrate the model into production once its performance meets your criteria. This could involve embedding it into a software application or offering it as a web service.
7. **Monitoring and Maintenance**: Keep track of the model's performance post-deployment and update it as necessary to adapt to changing real-world conditions.

The ML workflow is an iterative process. Once you have deployed a model, you may find that it needs to be retrained on new data or that the algorithm needs to be adjusted. It's important to monitor the performance of your model closely and make changes as needed to ensure that it is still meeting your needs. In addition to the above steps, there are a number of other important considerations for ML workflows, such as:
The ML workflow is iterative, requiring ongoing monitoring and potential adjustments. Additional considerations include:

* **Version control:** It's important to track changes to your code and data so that you can easily reproduce your results and revert to previous versions if necessary.
* **Documentation:** It's important to document your ML workflow so that others can understand and reproduce your work.
* **Testing:** It's important to test your ML workflow thoroughly to ensure that it is working as expected.
* **Security:** It's important to consider the security of your ML workflow and data, especially if you are deploying your model to production.
* **Version Control**: Keep track of code and data changes to reproduce results and revert to earlier versions if needed.
* **Documentation**: Maintain detailed documentation to allow for workflow understanding and reproduction.
* **Testing**: Rigorously test the workflow to ensure its functionality.
* **Security**: Safeguard your workflow and data, particularly when deploying models in production settings.

## General vs. Embedded AI

The ML workflow delineated above serves as a comprehensive guide applicable broadly across various platforms and ecosystems, encompassing cloud-based solutions, edge computing, and tinyML. However, when we delineate the nuances of the general ML workflow and contrast it with the workflow in Embedded AI environments, we encounter a series of intricate differences and complexities. These nuances not only elevate the embedded AI workflow to a challenging and captivating domain but also open avenues for remarkable innovations and advancements.

Now, let's explore these differences in detail:

1. **Resource Optimization**:
- **General ML Workflow**: Generally has the luxury of substantial computational resources available in cloud or data center environments. It focuses more on model accuracy and performance.
- **Embedded AI Workflow**: Needs meticulous planning and execution to optimize the model's size and computational demands, as they have to operate within the limited resources available in embedded systems. Techniques like model quantization and pruning become essential.

2. **Real-time Processing**:
- **General ML Workflow**: The emphasis on real-time processing is usually less, and batch processing of data is quite common.
- **Embedded AI Workflow**: Focuses heavily on real-time data processing, necessitating a workflow where low latency and rapid execution are a priority, especially in applications like autonomous driving and industrial automation.

3. **Data Management and Privacy**:
- **General ML Workflow**: Data is typically processed in centralized locations, sometimes requiring extensive data transfer, with a focus on securing data during transit and storage.
- **Embedded AI Workflow**: Promotes edge computing, which facilitates data processing closer to the source, reducing data transmission needs and enhancing privacy by keeping sensitive data localized.

4. **Hardware-Software Integration**:
- **General ML Workflow**: Often operates on general-purpose hardware platforms with software development happening somewhat independently.
- **Embedded AI Workflow**: Involves a tighter hardware-software co-design where both are developed in tandem to achieve optimal performance and efficiency, integrating custom chips or utilizing hardware accelerators.

## Roles \& Responsibilities

As we work through the various tasks at hand, you will realize that there is a lot of complexity. Creating a machine learning solution, particularly for embedded AI systems, is a multidisciplinary endeavor involving various experts and specialists. Here is a list of personnel that are typically involved in the process, along with brief descriptions of their roles:

**Project Manager:**

- Coordinates and manages the overall project.
- Ensures all team members are working synergistically.
- Responsible for project timelines and milestones.

**Domain Experts:**

- Provide insights into the specific domain where the AI system will be implemented.
- Help in defining project requirements and constraints based on domain-specific knowledge.

**Data Scientists:**

- Specialize in analyzing data to develop machine learning models.
- Responsible for data cleaning, exploration, and feature engineering.

**Machine Learning Engineers:**

- Focus on the development and deployment of machine learning models.
- Collaborate with data scientists to optimize models for embedded systems.

**Data Engineers:**

- Responsible for managing and optimizing data pipelines.
- Work on the storage and retrieval of data used for machine learning model training.

**Embedded Systems Engineers:**

- Focus on integrating machine learning models into embedded systems.
- Optimize system resources for running AI applications.

**Software Developers:**

- Develop software components that interface with the machine learning models.
- Responsible for implementing APIs and other integration points for the AI system.

**Hardware Engineers:**

- Involved in designing and optimizing the hardware that hosts the embedded AI system.
- Collaborate with embedded systems engineers to ensure compatibility.

**UI/UX Designers:**

- Design the user interface and experience for interacting with the AI system.
- Focus on user-centric design and ensuring usability.

**Quality Assurance (QA) Engineers:**

- Responsible for testing the overall system to ensure it meets quality standards.
- Work on identifying bugs and issues before the system is deployed.

**Ethicists and Legal Advisors:**
The ML workflow serves as a universal guide, applicable across various platforms including cloud-based solutions, edge computing, and tinyML. However, the workflow for Embedded AI introduces unique complexities and challenges, which not only make it a captivating domain but also pave the way for remarkable innovations.

- Consult on the ethical implications of the AI system.
- Ensure compliance with legal and regulatory requirements related to AI.
### Resource Optimization
- **General ML Workflow**: Prioritizes model accuracy and performance, often leveraging abundant computational resources in cloud or data center environments.
- **Embedded AI Workflow**: Requires careful planning to optimize model size and computational demands, given the resource constraints of embedded systems. Techniques like model quantization and pruning are crucial.

**Operations and Maintenance Personnel:**
### Real-time Processing
- **General ML Workflow**: Less emphasis on real-time processing, often relying on batch data processing.
- **Embedded AI Workflow**: Prioritizes real-time data processing, making low latency and quick execution essential, especially in applications like autonomous vehicles and industrial automation.

- Responsible for monitoring the system after deployment.
- Work on maintaining and upgrading the system as needed.
### Data Management and Privacy
- **General ML Workflow**: Processes data in centralized locations, often necessitating extensive data transfer and focusing on data security during transit and storage.
- **Embedded AI Workflow**: Leverages edge computing to process data closer to its source, reducing data transmission and enhancing privacy through data localization.

**Security Specialists:**
### Hardware-Software Integration
- **General ML Workflow**: Typically operates on general-purpose hardware, with software development occurring somewhat independently.
- **Embedded AI Workflow**: Involves a more integrated approach to hardware and software development, often incorporating custom chips or hardware accelerators to achieve optimal performance.

- Focus on ensuring the security of the AI system.
- Work on identifying and mitigating potential security vulnerabilities.
## Roles & Responsibilities

Don't worry! You don't have to be a one-stop ninja.
Creating an ML solution, especially for embedded AI, is a multidisciplinary effort involving various specialists.

Understanding the diversified roles and responsibilities is paramount in the journey to building a successful machine learning project. As we traverse the upcoming chapters, we will wear the different hats, embracing the essence and expertise of each role described herein. This immersive method nurtures a deep-seated appreciation for the inherent complexities, thereby facilitating an encompassing grasp of the multifaceted dynamics of embedded AI projects.
Here's a rundown of the typical roles involved:

Moreover, this well-rounded insight promotes not only seamless collaboration and unified efforts but also fosters an environment ripe for innovation. It enables us to identify areas where cross-disciplinary insights might foster novel thoughts, nurturing ideas and ushering in breakthroughs in the field. Additionally, being aware of the intricacies of each role allows us to anticipate potential obstacles and strategize effectively, guiding the project towards triumph with foresight and detailed understanding.
| Role | Responsibilities |
|--------------------------------|----------------------------------------------------------------------------------------------------|
| Project Manager | Oversees the project, ensuring timelines and milestones are met. |
| Domain Experts | Offer domain-specific insights to define project requirements. |
| Data Scientists | Specialize in data analysis and model development. |
| Machine Learning Engineers | Focus on model development and deployment. |
| Data Engineers | Manage data pipelines. |
| Embedded Systems Engineers | Integrate ML models into embedded systems. |
| Software Developers | Develop software components for AI system integration. |
| Hardware Engineers | Design and optimize hardware for the embedded AI system. |
| UI/UX Designers | Focus on user-centric design. |
| QA Engineers | Ensure the system meets quality standards. |
| Ethicists and Legal Advisors | Consult on ethical and legal compliance. |
| Operations and Maintenance Personnel | Monitor and maintain the deployed system. |
| Security Specialists | Ensure system security. |

As we advance, we encourage you to hold a deep appreciation for the amalgamation of expertise that contributes to the fruition of a successful machine learning initiative. In later discussions, particularly when we delve into [MLOps](./mlops.qmd), we will examine these different facets or personas in greater detail. It's worth noting at this point that the range of topics touched upon might seem overwhelming. This endeavor aims to provide you with a comprehensive view of the intricacies involved in constructing an embedded AI system, without the expectation of mastering every detail personally.
Understanding these roles is crucial for the successful completion of an ML project. As we proceed through the upcoming chapters, we'll delve into each role's essence and expertise, fostering a comprehensive understanding of the complexities involved in embedded AI projects. This holistic view not only facilitates seamless collaboration but also nurtures an environment ripe for innovation and breakthroughs.

0 comments on commit f237647

Please sign in to comment.