Skip to content

Commit

Permalink
Push dev branch build
Browse files Browse the repository at this point in the history
  • Loading branch information
Naeemkh committed Aug 25, 2024
1 parent 7d0323e commit 0b51520
Show file tree
Hide file tree
Showing 3 changed files with 8 additions and 8 deletions.
8 changes: 4 additions & 4 deletions docs/contents/frameworks/frameworks.html
Original file line number Diff line number Diff line change
Expand Up @@ -1647,7 +1647,7 @@ <h3 data-number="6.8.3" class="anchored" data-anchor-id="library"><span class="h
<section id="choosing-the-right-framework" class="level2" data-number="6.9">
<h2 data-number="6.9" class="anchored" data-anchor-id="choosing-the-right-framework"><span class="header-section-number">6.9</span> Choosing the Right Framework</h2>
<p>Choosing the right machine learning framework for a given application requires carefully evaluating models, hardware, and software considerations. By analyzing these three aspects—models, hardware, and software—ML engineers can select the optimal framework and customize it as needed for efficient and performant on-device ML applications. The goal is to balance model complexity, hardware limitations, and software integration to design a tailored ML pipeline for embedded and edge devices.</p>
<div id="fig-tf-comparison" class="quarto-float quarto-figure quarto-figure-center anchored" data-align="center" data-caption="TensorFlow Framework Comparison - General">
<div id="fig-tf-comparison" class="quarto-float quarto-figure quarto-figure-center anchored" data-caption="TensorFlow Framework Comparison - General" data-align="center">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-tf-comparison-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<img src="images/png/image4.png" style="width:100.0%" data-align="center" data-caption="TensorFlow Framework Comparison - General" class="figure-img">
Expand All @@ -1663,7 +1663,7 @@ <h3 data-number="6.9.1" class="anchored" data-anchor-id="model"><span class="hea
</section>
<section id="software" class="level3" data-number="6.9.2">
<h3 data-number="6.9.2" class="anchored" data-anchor-id="software"><span class="header-section-number">6.9.2</span> Software</h3>
<div id="fig-tf-sw-comparison" class="quarto-float quarto-figure quarto-figure-center anchored" data-align="center" data-caption="TensorFlow Framework Comparison - Model">
<div id="fig-tf-sw-comparison" class="quarto-float quarto-figure quarto-figure-center anchored" data-caption="TensorFlow Framework Comparison - Model" data-align="center">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-tf-sw-comparison-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<img src="images/png/image5.png" style="width:100.0%" data-align="center" data-caption="TensorFlow Framework Comparison - Model" class="figure-img">
Expand All @@ -1677,7 +1677,7 @@ <h3 data-number="6.9.2" class="anchored" data-anchor-id="software"><span class="
</section>
<section id="hardware" class="level3" data-number="6.9.3">
<h3 data-number="6.9.3" class="anchored" data-anchor-id="hardware"><span class="header-section-number">6.9.3</span> Hardware</h3>
<div id="fig-tf-hw-comparison" class="quarto-float quarto-figure quarto-figure-center anchored" data-align="center" data-caption="TensorFlow Framework Comparison - Hardware">
<div id="fig-tf-hw-comparison" class="quarto-float quarto-figure quarto-figure-center anchored" data-caption="TensorFlow Framework Comparison - Hardware" data-align="center">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-tf-hw-comparison-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<img src="images/png/image3.png" style="width:100.0%" data-align="center" data-caption="TensorFlow Framework Comparison - Hardware" class="figure-img">
Expand Down Expand Up @@ -1723,7 +1723,7 @@ <h2 data-number="6.10" class="anchored" data-anchor-id="future-trends-in-ml-fram
<section id="decomposition" class="level3" data-number="6.10.1">
<h3 data-number="6.10.1" class="anchored" data-anchor-id="decomposition"><span class="header-section-number">6.10.1</span> Decomposition</h3>
<p>Currently, the ML system stack consists of four abstractions as shown in <a href="#fig-mlsys-stack" class="quarto-xref">Figure&nbsp;<span>6.11</span></a>, namely (1) computational graphs, (2) tensor programs, (3) libraries and runtimes, and (4) hardware primitives.</p>
<div id="fig-mlsys-stack" class="quarto-float quarto-figure quarto-figure-center anchored" data-align="center" data-caption="Four Abstractions in Current ML System Stack">
<div id="fig-mlsys-stack" class="quarto-float quarto-figure quarto-figure-center anchored" data-caption="Four Abstractions in Current ML System Stack" data-align="center">
<figure class="quarto-float quarto-float-fig figure">
<div aria-describedby="fig-mlsys-stack-caption-0ceaefa1-69ba-4598-a22c-09a6ac19f8ca">
<img src="images/png/image8.png" class="img-fluid figure-img" data-align="center" data-caption="Four Abstractions in Current ML System Stack">
Expand Down
6 changes: 3 additions & 3 deletions docs/contents/hw_acceleration/hw_acceleration.html
Original file line number Diff line number Diff line change
Expand Up @@ -2006,8 +2006,8 @@ <h3 data-number="10.9.3" class="anchored" data-anchor-id="ml-for-efficient-hardw
<p>A key goal is designing hardware architectures optimized for performance, power, and efficiency. ML introduces new techniques to automate and improve architecture design space exploration for general-purpose and specialized hardware like ML accelerators. Some promising examples include:</p>
<ul>
<li><strong>Architecture search for hardware:</strong> Search techniques like evolutionary algorithms <span class="citation" data-cites="kao2020gamma">(<a href="../../references.html#ref-kao2020gamma" role="doc-biblioref">Kao and Krishna 2020</a>)</span>, Bayesian optimization (<span class="citation" data-cites="reagen2017case">Reagen et al. (<a href="../../references.html#ref-reagen2017case" role="doc-biblioref">2017</a>)</span>, <span class="citation" data-cites="bhardwaj2020comprehensive">Bhardwaj et al. (<a href="../../references.html#ref-bhardwaj2020comprehensive" role="doc-biblioref">2020</a>)</span>), reinforcement learning (<span class="citation" data-cites="kao2020confuciux">Kao, Jeong, and Krishna (<a href="../../references.html#ref-kao2020confuciux" role="doc-biblioref">2020</a>)</span>, <span class="citation" data-cites="krishnan2022multiagent">Krishnan et al. (<a href="../../references.html#ref-krishnan2022multiagent" role="doc-biblioref">2022</a>)</span>) can automatically generate novel hardware architectures by mutating and mixing design attributes like cache size, number of parallel units, memory bandwidth, and so on. This allows for efficient navigation of large design spaces.</li>
<li><strong>Predictive modeling for optimization:</strong> - ML models can be trained to predict hardware performance, power, and efficiency metrics for a given architecture. These become “surrogate models” <span class="citation" data-cites="krishnan2023archgym">(<a href="../../references.html#ref-krishnan2023archgym" role="doc-biblioref">Krishnan et al. 2023</a>)</span> for fast optimization and space exploration by substituting lengthy simulations.</li>
<li><strong>Specialized accelerator optimization:</strong> - For specialized chips like tensor processing units for AI, automated architecture search techniques based on ML algorithms <span class="citation" data-cites="zhang2022fullstack">(<a href="../../references.html#ref-zhang2022fullstack" role="doc-biblioref">D. Zhang et al. 2022</a>)</span> show promise for finding fast, efficient designs.</li>
<li><strong>Predictive modeling for optimization:</strong> ML models can be trained to predict hardware performance, power, and efficiency metrics for a given architecture. These become “surrogate models” <span class="citation" data-cites="krishnan2023archgym">(<a href="../../references.html#ref-krishnan2023archgym" role="doc-biblioref">Krishnan et al. 2023</a>)</span> for fast optimization and space exploration by substituting lengthy simulations.</li>
<li><strong>Specialized accelerator optimization:</strong> For specialized chips like tensor processing units for AI, automated architecture search techniques based on ML algorithms <span class="citation" data-cites="zhang2022fullstack">(<a href="../../references.html#ref-zhang2022fullstack" role="doc-biblioref">D. Zhang et al. 2022</a>)</span> show promise for finding fast, efficient designs.</li>
</ul>
<div class="no-row-height column-margin column-container"><div id="ref-kao2020gamma" class="csl-entry" role="listitem">
Kao, Sheng-Chun, and Tushar Krishna. 2020. <span>“Gamma: Automating the HW Mapping of DNN Models on Accelerators via Genetic Algorithm.”</span> In <em>Proceedings of the 39th International Conference on Computer-Aided Design</em>, 1–9. ACM. <a href="https://doi.org/10.1145/3400302.3415639">https://doi.org/10.1145/3400302.3415639</a>.
Expand All @@ -2031,7 +2031,7 @@ <h3 data-number="10.9.4" class="anchored" data-anchor-id="ml-to-optimize-manufac
<li><strong>Process optimization:</strong> Supervised learning models can be trained on process data to identify factors that lead to low yields. The models can then optimize parameters to improve yields, throughput, or consistency.</li>
<li><strong>Yield prediction:</strong> By analyzing test data from fabricated designs using techniques like regression trees, ML models can predict yields early in production, allowing process adjustments.</li>
<li><strong>Defect detection:</strong> Computer vision ML techniques can be applied to images of designs to identify defects invisible to the human eye. This enables precision quality control and root cause analysis.</li>
<li><strong>Proactive failure analysis:</strong> - ML models can help predict, diagnose, and prevent issues that lead to downstream defects and failures by analyzing structured and unstructured process data.</li>
<li><strong>Proactive failure analysis:</strong> ML models can help predict, diagnose, and prevent issues that lead to downstream defects and failures by analyzing structured and unstructured process data.</li>
</ul>
<p>Applying ML to manufacturing enables process optimization, real-time quality control, predictive maintenance, and higher yields. Challenges include managing complex manufacturing data and variations. But ML is poised to transform semiconductor manufacturing.</p>
</section>
Expand Down
Loading

0 comments on commit 0b51520

Please sign in to comment.