Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Don't escape double quotes in .tsv schemas #990

Merged
merged 1 commit into from
Jul 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions hed/schema/schema_io/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
from hed.schema.schema_io.ontology_util import save_dataframes, load_dataframes
52 changes: 4 additions & 48 deletions hed/schema/schema_io/df2schema.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,8 @@
This module is used to create a HedSchema object from a set of .tsv files.
"""
import io
import os

from hed.schema.schema_io import ontology_util
from hed.schema.schema_io import ontology_util, load_dataframes
from hed.schema.hed_schema_constants import HedSectionKey, HedKey
from hed.errors.exceptions import HedFileError, HedExceptions
from hed.schema.schema_io.base2schema import SchemaLoader
Expand All @@ -23,7 +22,7 @@ class SchemaLoaderDF(SchemaLoader):
"""

def __init__(self, filenames, schema_as_strings_or_df, name=""):
self.filenames = self.convert_filenames_to_dict(filenames)
self.filenames = ontology_util.convert_filenames_to_dict(filenames)
self.schema_as_strings_or_df = schema_as_strings_or_df
if self.filenames:
reported_filename = self.filenames.get(constants.STRUCT_KEY)
Expand All @@ -47,39 +46,6 @@ def load_spreadsheet(cls, filenames=None, schema_as_strings_or_df=None, name="")
loader = cls(filenames, schema_as_strings_or_df=schema_as_strings_or_df, name=name)
return loader._load()

@staticmethod
def convert_filenames_to_dict(filenames):
"""Infers filename meaning based on suffix, e.g. _Tag for the tags sheet

Parameters:
filenames(str or None or list or dict): The list to convert to a dict
If a string with a .tsv suffix: Save to that location, adding the suffix to each .tsv file
If a string with no .tsv suffix: Save to that folder, with the contents being the separate .tsv files.
Returns:
filename_dict(str: str): The required suffix to filename mapping"""
result_filenames = {}
if isinstance(filenames, str):
if filenames.endswith(".tsv"):
base, base_ext = os.path.splitext(filenames)
else:
# Load as foldername/foldername_suffix.tsv
base_dir = filenames
base_filename = os.path.split(base_dir)[1]
base = os.path.join(base_dir, base_filename)
for suffix in constants.DF_SUFFIXES:
filename = f"{base}_{suffix}.tsv"
result_filenames[suffix] = filename
filenames = result_filenames
elif isinstance(filenames, list):
for filename in filenames:
remainder, suffix = filename.replace("_", "-").rsplit("-")
for needed_suffix in constants.DF_SUFFIXES:
if needed_suffix in suffix:
result_filenames[needed_suffix] = filename
filenames = result_filenames

return filenames

def _open_file(self):
if self.filenames:
dataframes = load_dataframes(self.filenames)
Expand Down Expand Up @@ -298,18 +264,6 @@ def _add_to_dict(self, row_number, row, entry, key_class):
return self._add_to_dict_base(entry, key_class)


def load_dataframes(filenames):
dict_filenames = SchemaLoaderDF.convert_filenames_to_dict(filenames)
dataframes = ontology_util.create_empty_dataframes()
for key, filename in dict_filenames.items():
try:
dataframes[key] = pd.read_csv(filename, sep="\t", dtype=str, na_filter=False)
except OSError:
# todo: consider if we want to report this error(we probably do)
pass # We will use a blank one for this
return dataframes


def load_dataframes_from_strings(schema_data):
""" Load the given strings/dataframes as dataframes.

Expand All @@ -322,3 +276,5 @@ def load_dataframes_from_strings(schema_data):
return {key: value if isinstance(value, pd.DataFrame) else pd.read_csv(io.StringIO(value), sep="\t",
dtype=str, na_filter=False)
for key, value in schema_data.items()}


48 changes: 47 additions & 1 deletion hed/schema/schema_io/ontology_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import os

import pandas as pd
import csv

from hed.schema.schema_io import schema_util
from hed.errors.exceptions import HedFileError
Expand Down Expand Up @@ -391,7 +392,40 @@ def save_dataframes(base_filename, dataframe_dict):
for suffix, dataframe in dataframe_dict.items():
filename = f"{base}_{suffix}.tsv"
with open(filename, mode='w', encoding='utf-8') as opened_file:
dataframe.to_csv(opened_file, sep='\t', index=False, header=True)
dataframe.to_csv(opened_file, sep='\t', index=False, header=True, quoting=csv.QUOTE_NONE)


def convert_filenames_to_dict(filenames):
"""Infers filename meaning based on suffix, e.g. _Tag for the tags sheet

Parameters:
filenames(str or None or list or dict): The list to convert to a dict
If a string with a .tsv suffix: Save to that location, adding the suffix to each .tsv file
If a string with no .tsv suffix: Save to that folder, with the contents being the separate .tsv files.
Returns:
filename_dict(str: str): The required suffix to filename mapping"""
result_filenames = {}
if isinstance(filenames, str):
if filenames.endswith(".tsv"):
base, base_ext = os.path.splitext(filenames)
else:
# Load as foldername/foldername_suffix.tsv
base_dir = filenames
base_filename = os.path.split(base_dir)[1]
base = os.path.join(base_dir, base_filename)
for suffix in constants.DF_SUFFIXES:
filename = f"{base}_{suffix}.tsv"
result_filenames[suffix] = filename
filenames = result_filenames
elif isinstance(filenames, list):
for filename in filenames:
remainder, suffix = filename.replace("_", "-").rsplit("-")
for needed_suffix in constants.DF_SUFFIXES:
if needed_suffix in suffix:
result_filenames[needed_suffix] = filename
filenames = result_filenames

return filenames


def get_attributes_from_row(row):
Expand Down Expand Up @@ -429,3 +463,15 @@ def create_empty_dataframes():
constants.OBJECT_KEY: pd.DataFrame(columns=constants.property_columns, dtype=str),
constants.ATTRIBUTE_PROPERTY_KEY: pd.DataFrame(columns=constants.property_columns_reduced, dtype=str),
}


def load_dataframes(filenames):
dict_filenames = convert_filenames_to_dict(filenames)
dataframes = create_empty_dataframes()
for key, filename in dict_filenames.items():
try:
dataframes[key] = pd.read_csv(filename, sep="\t", dtype=str, na_filter=False)
except OSError:
# todo: consider if we want to report this error(we probably do)
pass # We will use a blank one for this
return dataframes
4 changes: 2 additions & 2 deletions hed/scripts/add_hed_ids.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from hed.scripts.script_util import get_prerelease_path
from hed.scripts.convert_and_update_schema import convert_and_update
import argparse
from hed.schema.schema_io.df2schema import SchemaLoaderDF
from hed.schema.schema_io.ontology_util import convert_filenames_to_dict

# Slightly tweaked version of convert_and_update_schema.py with a new main function to allow different parameters.
def main():
Expand All @@ -13,7 +13,7 @@ def main():
args = parser.parse_args()

basepath = get_prerelease_path(args.repo_path, schema_name=args.schema_name, schema_version=args.schema_version)
filenames = list(SchemaLoaderDF.convert_filenames_to_dict(basepath).values())
filenames = list(convert_filenames_to_dict(basepath).values())
set_ids = True

return convert_and_update(filenames, set_ids)
Expand Down
2 changes: 1 addition & 1 deletion hed/scripts/convert_and_update_schema.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from hed.scripts.script_util import sort_base_schemas, validate_all_schemas, add_extension
from hed.schema.schema_io.df2schema import load_dataframes
from hed.schema.schema_io import load_dataframes
from hed.schema.schema_io.ontology_util import update_dataframes_from_schema, save_dataframes
from hed.schema.hed_schema_io import load_schema, from_dataframes
from hed.errors import get_printable_issue_string, HedFileError
Expand Down
2 changes: 1 addition & 1 deletion hed/scripts/create_ontology.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
from hed.errors import HedFileError, get_printable_issue_string
from hed.schema.schema_io.df2schema import load_dataframes
from hed.schema.schema_io import load_dataframes
from hed.schema.schema_io.ontology_util import convert_df_to_omn
from hed.scripts.script_util import get_prerelease_path, get_schema_filename
import argparse
Expand Down
5 changes: 2 additions & 3 deletions tests/schema/test_hed_schema_io_df.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,8 @@
import pandas as pd
from hed.errors import HedExceptions, HedFileError
from hed.schema.hed_schema_io import load_schema, load_schema_version, from_dataframes
from hed.schema.schema_io.df2schema import SchemaLoaderDF
from hed.schema import hed_schema_df_constants as df_constants
from hed.schema.schema_io.ontology_util import create_empty_dataframes
from hed.schema.schema_io.ontology_util import create_empty_dataframes, convert_filenames_to_dict


class TestHedSchemaDF(unittest.TestCase):
Expand Down Expand Up @@ -49,7 +48,7 @@ def test_from_dataframes(self):
filename = self.output_folder + "test_8_string.tsv"
schema.save_as_dataframes(self.output_folder + "test_8_string.tsv")

filenames = SchemaLoaderDF.convert_filenames_to_dict(filename)
filenames = convert_filenames_to_dict(filename)
new_file_strings = {}
for key, value in filenames.items():
with open(value, "r") as f:
Expand Down