kaggle - https://www.kaggle.com/c/global-wheat-detection
- ssd model
- random rotate90 and other augmentation for train
- wandb logger, used pytorch-lightning/pytorch, fp16
In the making(missed to do):
- training on 5 folds(clustered by kmeans, previously reduced by PCA)
- tta for test(inference)
in /test_output/viz
Submission score [email protected]:0.05
score: 0.6448
kaggle notebook - https://www.kaggle.com/heorgiibolotov/kernel1a17c2da7e
cut version of logs while training
├── apex.sh
├── eda.ipynb
├── image_plot.py
├── prepare_data.py # invalid version
├── requirements.txt
├── submission.csv
├── wandb
├── cp_data_from_hdd.sh
├── engdata.py # invalid version
├── parse_data.py # invalid version
├── report
├── retinaface
├── box_utils.py
├── data_augment.py
├── inference.py
├── make_submit.py
├── net.py
├── prior_box.py
├── train.py
├── configs
├── dataset.py
├── __init__.py
├── multibox_loss.py
├── network.py
├── __pycache__
├── utils.py
├── test_output
├── labels
├── viz
├── data
├── annotations
├── test
├── train.csv
├── train_with_bbox
├── sample_submission.csv
├── train
├── train.json
├── train_without_bbox
# step 1.(in this repo invalid version of the code)
!python engdata.py
# step 2.
!python -m retinaface.train -c retinaface/configs/2020-07-20.yaml
# step 3.
!python -m retinaface.inference -i data/test -c retinaface/configs/2020-07-20.yaml -o test_output -w 2020-07-27/epoch=7.ckpt -v