Skip to content

Commit

Permalink
Merge branch 'develop' into polarization
Browse files Browse the repository at this point in the history
  • Loading branch information
israelmcmc authored Nov 25, 2024
2 parents 39a701c + 5ea0243 commit 4d8e434
Show file tree
Hide file tree
Showing 48 changed files with 6,016 additions and 584 deletions.
2 changes: 1 addition & 1 deletion codecov.yml
Original file line number Diff line number Diff line change
Expand Up @@ -17,4 +17,4 @@ coverage:


comment:
hide_project_coverage: false # Show both overall and delta coverage
hide_project_coverage: false # Show both overall and delta coverage
5 changes: 5 additions & 0 deletions cosipy/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,8 @@
from .spacecraftfile import SpacecraftFile

from .ts_map import FastTSMap

from .source_injector import SourceInjector

from .background_estimation import LineBackgroundEstimation
from .background_estimation import ContinuumEstimation
359 changes: 359 additions & 0 deletions cosipy/background_estimation/ContinuumEstimation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,359 @@
# Imports:
import os
from astropy.coordinates import SkyCoord
from astropy import units as u
from cosipy.response import FullDetectorResponse, DetectorResponse
from cosipy import BinnedData
from mhealpy import HealpixMap, HealpixBase
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import norm
import numpy.ma as ma
from tqdm import tqdm
import logging
logger = logging.getLogger(__name__)

class ContinuumEstimation:

def calc_psr(self, sc_orientation, detector_response, coord, nside=16):

"""Calculates point source response (PSR) in Galactic coordinates.
Parameters
----------
ori_file : str
Full path to orienation file.
sc_orientation : cosipy.spacecraftfile.SpacecraftFile
Spacecraft orientation object.
detector_response : str
Full path to detector response file.
coord : astropy.coordinates.SkyCoord
The coordinates of the target object.
nside : int, optional
nside of scatt map (default is 16).
Returns
-------
:py:class:`PointSourceResponse`
"""

# Detector response:
dr = detector_response

# Scatt map:
scatt_map = sc_orientation.get_scatt_map(coord, nside = nside, coordsys = 'galactic')

# Calculate PSR:
with FullDetectorResponse.open(dr) as response:
psr = response.get_point_source_response(coord = coord, scatt_map = scatt_map)

return psr

def load_psr_from_file(self, psr_file):

"""Loads point source response from h5 file.
Parameters
----------
psr_file : str
Full path to precomputed response file (.h5 file).
"""

logger.info("...loading the pre-computed point source response ...")
psr = DetectorResponse.open(psr_file)
logger.info("--> done")

return psr

def load_full_data(self, data_file, data_yaml):

"""Loads binned data to be used as a template for the background estimate.
Parameters
----------
data_file : str
Full path to binned data (must be .h5 file).
data_yaml : str
Full path to the dataIO yaml file used for binning the data.
Notes
-----
In practice, the data file used for estimating the background
should be the full dataset.
The full data binning needs to match the PSR.
"""

self.full_data = BinnedData(data_yaml)
self.full_data.load_binned_data_from_hdf5(data_file)

return

def mask_from_cumdist(self, psichi_map, containment, make_plots=False):

"""
Determines masked pixels from cumulative distribution of
the point source response.
Parameters
----------
psichi_map : histpy:Histogram
Point source response projected onto psichi. This can be
either a slice of Em and Phi, or the full projection. Note
that psichi is a HealpixMap axis in histpy.
containment : float
The percentage (non-inclusive) of the cumulative distribution
to use for the mask, i.e. all pixels that fall below this value
in the cumulative distribution will be masked.
make_plots : bool
Option to plot cumulative distribution.
Returns
-------
sorted_indices : array
Indices of sorted psichi array.
arm_mask : array
Boolean array specifying pixels in the psichi map that will be masked.
Note
----
The cumulative distribution is an estimate of the angular
resolution measure (ARM), which is a measure of the PSF
for Compton imaging.
"""

# Get healpix map:
h = psichi_map
m = HealpixMap(base = HealpixBase(npix = h.nbins), data = h.contents)

# Sort data in descending order:
sorted_data = np.sort(m)[::-1]

# Calculte the cummulative distribution
cumdist = np.cumsum(sorted_data) / sum(sorted_data)

# Get indices of sorted array
sorted_indices = np.argsort(h.contents.value)[::-1]

# Define mask based on fraction of total exposure (i.e. counts):
arm_mask = cumdist >= containment
arm_mask = ~arm_mask

# Plot cummulative distribution and corresponding masks:
if make_plots == True:
plt.plot(cumdist)
plt.title("Cumulative Distribution")
plt.xlabel("Pixel")
plt.ylabel("Fraction of Counts")
plt.savefig("cumdist.png")
plt.show()
plt.close()

return sorted_indices, arm_mask

def simple_inpainting(self, m_data, sorted_indices, arm_mask):

"""Highly simplistic method for inpainting masked region in CDS.
This method relies on the input healpix map having a ring
ordering. For each masked pixel, it searches to the left (i.e.
lower pixel numbers) until reaching the first non-zero pixel.
It then search to the right (i.e. higher pixel numbers) until
again finding the first non-zero pixel. The mean of the two
values is used for filling in the masked pixel.
Parameters
----------
m_data : array-like
HealpixMap object, containing projection of PSR onto psichi.
sorted_indices : array
Indices of sorted psichi array.
arm_mask : array
Boolean array specifying pixels in the psichi map that will be masked.
Returns
-------
interp_list : array
Values for the inpainting, corresponding to the masked pixels.
"""

# Get mean of masked data for edge cases (simple solution for now):
# CK: It would be better if this were at least the mean of an
# np masked array object, but a better method is anyways needed.
masked_mean = np.mean(m_data)

# Get interpolation values:
interp_list_low = []
interp_list_high = []
for i in range(0,len(sorted_indices[arm_mask])):

this_index = sorted_indices[arm_mask][i]

# Search left:
k = 1
search_left = True
while search_left == True:

if this_index-k < 0:
logger.info("Edge case!")
interp_list_low.append(masked_mean)
search_left = False
break

next_value = m_data[this_index-k]
if next_value == 0:
k += 1
if next_value != 0:
interp_list_low.append(next_value)
search_left = False

# Search right:
j = 1
search_right = True
while search_right == True:

if this_index+j >= self.psr.axes['PsiChi'].nbins-1:
logger.info("Edge case!")
interp_list_high.append(masked_mean)
search_right = False
break

next_value = m_data[this_index+j]
if next_value == 0:
j += 1
if next_value != 0:
interp_list_high.append(next_value)
search_right = False

interp_list_low = np.array(interp_list_low)
interp_list_high = np.array(interp_list_high)
interp_list = (interp_list_low + interp_list_high) / 2.0

return interp_list

def continuum_bg_estimation(self, data_file, data_yaml, psr, \
containment=0.4, make_plots=False,\
e_loop="default", s_loop="default"):

"""Estimates continuum background.
Parameters
----------
data_file : str
Full path to binned data (must be .h5 file).
data_yaml : str
Full path to the dataIO yaml file used for binning the data.
psr : py:class:`PointSourceResponse`
Point source response object.
containment : float, optional
The percentage (non-inclusive) of the cumulative distribution
to use for the mask, i.e. all pixels that fall below this value
in the cumulative distribution will be masked. Default is 0.4.
make_plots : bool, optional
Option to make some plots of the data, response, and masks.
Default is False.
e_loop : tuple, optional
Option to pass tuple specifying which energy range to
loop over. This must coincide with the energy bins. The default
is all bins.
s_loop : tuple, optional
Option to pass tuple specifying which Phi anlge range to
loop over. This must coincide with the Phi bins. The default
is all bins.
Returns
-------
estimated_bg : histpy:Histogram
Estimated background as histpy object.
"""

# Define psr attribute:
self.psr = psr

# Load data to be used for BG estimation:
self.load_full_data(data_file,data_yaml)
estimated_bg = self.full_data.binned_data.project('Em', 'Phi', 'PsiChi')

# Defaults for energy and scattering angle loops:
if e_loop == "default":
e_loop = (0,len(self.psr.axes['Em'].centers))
if s_loop == "default":
s_loop = (0,len(self.psr.axes['Phi'].centers))

# Progress bar:
e_tot = e_loop[1] - e_loop[0]
s_tot = s_loop[1] - s_loop[0]
num_lines = e_tot*s_tot
pbar = tqdm(total=num_lines)

# Loop through all bins of energy and phi:
for E in range(e_loop[0],e_loop[1]):
for s in range(s_loop[0],s_loop[1]):

pbar.update(1) # update progress bar
logger.info("Bin %s %s" %(str(E),str(s)))

# Get PSR slice:
h = self.psr.slice[{'Em':E, 'Phi':s}].project('PsiChi')

# Get mask:
sorted_indices, arm_mask = self.mask_from_cumdist(h, containment, make_plots=make_plots)

# Mask data:
h_data = self.full_data.binned_data.project('Em', 'Phi', 'PsiChi').slice[{'Em':E, 'Phi':s}].project('PsiChi')
m_data = HealpixMap(base = HealpixBase(npix = h_data.nbins), data = h_data.contents.todense())
m_data[sorted_indices[arm_mask]] = 0

# Skip this iteration if map is all zeros:
if len(m_data[m_data[:] > 0]) == 0:
logger.info("All zeros and so skipping iteration!")
continue

# Get interpolated values:
interp_list = self.simple_inpainting(m_data, sorted_indices, arm_mask)

# Update estimated BG:
for p in range(len(sorted_indices[arm_mask])):
estimated_bg[E,s,sorted_indices[arm_mask][p]] = interp_list[p]

# Option to make some plots:
if make_plots == True:

# Plot true response:
m_dummy = HealpixMap(base = HealpixBase(npix = h.nbins), data = h.contents)
plot,ax = m_dummy.plot('mollview')
plt.title("True Response")
plt.show()
plt.close()

# Plot masked response:
m_dummy[sorted_indices[arm_mask]] = 0
plot,ax = m_dummy.plot('mollview')
plt.title("Masked Response")
plt.show()
plt.close()

# Plot true data:
m_data_dummy = HealpixMap(base = HealpixBase(npix = h_data.nbins), data = h_data.contents.todense())
plot,ax = m_data_dummy.plot('mollview')
plt.title("True Data")
plt.show()
plt.close()

# Plot masked data:
plot,ax = m_data.plot('mollview')
plt.title("Masked Data")
plt.show()
plt.close()

# Plot masked data with interpolated values:
m_data[sorted_indices[arm_mask]] = interp_list
plot,ax = m_data.plot('mollview')
plt.title("Interpolated Data (Estimated BG)")
plt.show()
plt.close()

# Close progress bar:
pbar.close()

return estimated_bg
Loading

0 comments on commit 4d8e434

Please sign in to comment.