forked from cositools/cosipy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' into MAP_RichardsonLucy
- Loading branch information
Showing
34 changed files
with
4,601 additions
and
160 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
257 changes: 257 additions & 0 deletions
257
cosipy/background_estimation/LineBackgroundEstimation.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,257 @@ | ||
import logging | ||
logger = logging.getLogger(__name__) | ||
|
||
from histpy import Histogram, Axis, Axes | ||
import astropy.units as u | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from scipy.optimize import curve_fit | ||
from scipy import integrate | ||
from iminuit import Minuit | ||
|
||
class LineBackgroundEstimation: | ||
""" | ||
A class for estimating and modeling background in line spectra. | ||
This class provides methods for setting up a background model, | ||
fitting it to data, and generating background model histograms. | ||
Attributes | ||
---------- | ||
event_histogram : Histogram | ||
The input event histogram. | ||
energy_axis : Axis | ||
The energy axis of the event histogram. | ||
energy_spectrum : Histogram | ||
The projected energy spectrum. | ||
bkg_spectrum_model : callable | ||
The background spectrum model function. | ||
bkg_spectrum_model_parameter : list | ||
The parameters of the background spectrum model. | ||
mask : ndarray | ||
Boolean mask for excluding regions from the fit. | ||
""" | ||
|
||
def __init__(self, event_histogram): | ||
""" | ||
Initialize the LineBackgroundEstimation object. | ||
Parameters | ||
---------- | ||
event_histogram : Histogram | ||
The input event histogram. | ||
""" | ||
# event histogram | ||
self.event_histogram = event_histogram | ||
|
||
# projected histogram onto the energy axis | ||
self.energy_axis = self.event_histogram.axes['Em'] | ||
self.energy_spectrum = self.event_histogram.project('Em') | ||
if self.energy_spectrum.is_sparse: | ||
self.energy_spectrum = self.energy_spectrum.to_dense() | ||
|
||
self.energy_spectrum.clear_underflow_and_overflow() | ||
|
||
# background fitting model | ||
self.bkg_spectrum_model = None | ||
self.bkg_spectrum_model_parameter = None | ||
|
||
# bins to be masked | ||
self.mask = np.zeros(self.energy_axis.nbins, dtype=bool) | ||
|
||
def set_bkg_energy_spectrum_model(self, bkg_spectrum_model, bkg_spectrum_model_parameter): | ||
""" | ||
Set the background energy spectrum model and its initial parameters. | ||
Parameters | ||
---------- | ||
bkg_spectrum_model : callable | ||
The background spectrum model function. | ||
bkg_spectrum_model_parameter : list | ||
Initial parameters for the background spectrum model. | ||
""" | ||
self.bkg_spectrum_model = bkg_spectrum_model | ||
self.bkg_spectrum_model_parameter = bkg_spectrum_model_parameter | ||
|
||
def set_mask(self, *mask_energy_ranges): | ||
""" | ||
Set mask for excluding energy ranges from the fit. | ||
Parameters | ||
---------- | ||
*mask_energy_ranges : tuple | ||
Variable number of energy range tuples to be masked. | ||
""" | ||
self.mask = np.zeros(self.energy_axis.nbins, dtype=bool) | ||
for mask_energy_range in mask_energy_ranges: | ||
this_mask = (mask_energy_range[0] <= self.energy_axis.bounds[:, 1]) & (self.energy_axis.bounds[:, 0] <= mask_energy_range[1]) | ||
self.mask = self.mask | this_mask | ||
|
||
def _calc_expected_spectrum(self, *args): | ||
""" | ||
Calculate the expected spectrum based on the current model and parameters. | ||
Parameters | ||
---------- | ||
*args : float | ||
Model parameters. | ||
Returns | ||
------- | ||
ndarray | ||
The calculated expected spectrum. | ||
""" | ||
return np.array([integrate.quad(lambda x: self.bkg_spectrum_model(x, *args), *energy_range)[0] for energy_range in self.energy_axis.bounds.value]) | ||
|
||
def _negative_log_likelihood(self, *args): | ||
""" | ||
Calculate the negative log-likelihood for the current model and parameters. | ||
Parameters | ||
---------- | ||
*args : float | ||
Model parameters. | ||
Returns | ||
------- | ||
float | ||
The calculated negative log-likelihood. | ||
""" | ||
expected_spectrum = self._calc_expected_spectrum(*args) | ||
return -np.sum(self.energy_spectrum.contents[~self.mask] * np.log(expected_spectrum)[~self.mask]) + np.sum(expected_spectrum[~self.mask]) | ||
|
||
def plot_energy_spectrum(self): | ||
""" | ||
Plot the energy spectrum and the fitted model if available. | ||
Returns | ||
------- | ||
tuple | ||
A tuple containing the matplotlib axis object and any additional objects returned by the plotting function. | ||
""" | ||
ax, _ = self.energy_spectrum.draw(label='input data') | ||
|
||
# plot background model | ||
if self.bkg_spectrum_model is not None: | ||
expected_spectrum = self._calc_expected_spectrum(*self.bkg_spectrum_model_parameter) | ||
ax.plot(self.energy_axis.centers, expected_spectrum, label='model') | ||
|
||
# shade mask regions | ||
start, end = None, None | ||
for i, this_mask in enumerate(self.mask): | ||
if this_mask: | ||
if start is None: | ||
start, end = self.energy_axis.bounds[i] | ||
else: | ||
_, end = self.energy_axis.bounds[i] | ||
else: | ||
if start is not None: | ||
ax.axvspan(start.value, end.value, color='lightgrey', alpha=0.5) | ||
start, end = None, None | ||
|
||
if start is not None: | ||
ax.axvspan(start.value, end.value, color='lightgrey', alpha=0.5) | ||
|
||
# legend and grid | ||
ax.legend() | ||
ax.grid() | ||
|
||
return ax, _ | ||
|
||
def fit_energy_spectrum(self): | ||
""" | ||
Fit the background energy spectrum model to the data. | ||
Returns | ||
------- | ||
Minuit | ||
The Minuit object containing the fit results. | ||
""" | ||
m = Minuit(self._negative_log_likelihood, *self.bkg_spectrum_model_parameter) | ||
m.errordef = Minuit.LIKELIHOOD | ||
|
||
m.migrad() | ||
m.hesse() | ||
|
||
# update the background model parameters | ||
self.bkg_spectrum_model_parameter = list(m.values) | ||
self.bkg_spectrum_model_parameter_errors = list(m.errors) | ||
|
||
return m | ||
|
||
def _get_weight_indices(self, energy_range): | ||
""" | ||
Get the weight and indices for a given energy range. | ||
Parameters | ||
---------- | ||
energy_range : tuple | ||
The energy range to calculate the weight for. | ||
Returns | ||
------- | ||
tuple | ||
A tuple containing the calculated weight and the corresponding energy indices. | ||
""" | ||
energy_indices = np.where((energy_range[0] <= self.energy_axis.lower_bounds) & (self.energy_axis.upper_bounds <= energy_range[1]))[0] | ||
|
||
if len(energy_indices) == 0: | ||
raise ValueError("The input energy range is too narrow to find a corresponding energy bin.") | ||
|
||
integrate_energy_range = [self.energy_axis.lower_bounds[energy_indices[0]].value, self.energy_axis.upper_bounds[energy_indices[-1]].value] | ||
|
||
if integrate_energy_range[0] != energy_range[0].value or integrate_energy_range[1] != energy_range[1].value: | ||
logger.info(f"The energy range {energy_range.value} is modified to {integrate_energy_range}") | ||
weight = integrate.quad(lambda x: self.bkg_spectrum_model(x, *self.bkg_spectrum_model_parameter), *integrate_energy_range)[0] | ||
return weight, energy_indices | ||
|
||
def generate_bkg_model_histogram(self, source_energy_range, bkg_estimation_energy_ranges): | ||
""" | ||
Generate a background model histogram based on the fitted model. | ||
Parameters | ||
---------- | ||
bkg_estimation_energy_ranges : list of tuple | ||
List of energy ranges for background estimation. | ||
smoothing_fwhm : float, optional | ||
Full width at half maximum for smoothing, by default None. | ||
Returns | ||
------- | ||
Histogram | ||
The generated background model histogram. | ||
""" | ||
# intergrated spectrum in the background estimation energy ranges | ||
weights = [] | ||
energy_indices_list = [] | ||
for bkg_estimation_energy_range in bkg_estimation_energy_ranges: | ||
weight, energy_indices = self._get_weight_indices(bkg_estimation_energy_range) | ||
weights.append(weight) | ||
energy_indices_list.append(energy_indices) | ||
|
||
# intergrated spectrum in the source region | ||
source_weight = integrate.quad(lambda x: self.bkg_spectrum_model(x, *self.bkg_spectrum_model_parameter), *source_energy_range.value)[0] | ||
|
||
# prepare a new histogram | ||
new_axes = [] | ||
for axis in self.event_histogram.axes: | ||
if axis.label != "Em": | ||
new_axes.append(axis) | ||
else: | ||
new_axes.append(Axis(source_energy_range, label = "Em")) | ||
|
||
bkg_model_histogram = Histogram(new_axes) | ||
|
||
# fill contents | ||
for energy_indices in energy_indices_list: | ||
for energy_index in energy_indices: | ||
if new_axes[0].label != "Em": | ||
bkg_model_histogram[:] += self.event_histogram[:,energy_index].todense() | ||
else: | ||
bkg_model_histogram[:] += self.event_histogram[energy_index].todense() | ||
|
||
# normalization | ||
corr_factor = source_weight / np.sum(weights) | ||
bkg_model_histogram[:] *= corr_factor | ||
|
||
return bkg_model_histogram |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .LineBackgroundEstimation import LineBackgroundEstimation |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.