forked from cositools/cosipy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request cositools#235 from ckarwin/develop
Continuum BG Estimation
- Loading branch information
Showing
9 changed files
with
1,007 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,359 @@ | ||
# Imports: | ||
import os | ||
from astropy.coordinates import SkyCoord | ||
from astropy import units as u | ||
from cosipy.response import FullDetectorResponse, DetectorResponse | ||
from cosipy import BinnedData | ||
from mhealpy import HealpixMap, HealpixBase | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from scipy.stats import norm | ||
import numpy.ma as ma | ||
from tqdm import tqdm | ||
import logging | ||
logger = logging.getLogger(__name__) | ||
|
||
class ContinuumEstimation: | ||
|
||
def calc_psr(self, sc_orientation, detector_response, coord, nside=16): | ||
|
||
"""Calculates point source response (PSR) in Galactic coordinates. | ||
Parameters | ||
---------- | ||
ori_file : str | ||
Full path to orienation file. | ||
sc_orientation : cosipy.spacecraftfile.SpacecraftFile | ||
Spacecraft orientation object. | ||
detector_response : str | ||
Full path to detector response file. | ||
coord : astropy.coordinates.SkyCoord | ||
The coordinates of the target object. | ||
nside : int, optional | ||
nside of scatt map (default is 16). | ||
Returns | ||
------- | ||
:py:class:`PointSourceResponse` | ||
""" | ||
|
||
# Detector response: | ||
dr = detector_response | ||
|
||
# Scatt map: | ||
scatt_map = sc_orientation.get_scatt_map(coord, nside = nside, coordsys = 'galactic') | ||
|
||
# Calculate PSR: | ||
with FullDetectorResponse.open(dr) as response: | ||
psr = response.get_point_source_response(coord = coord, scatt_map = scatt_map) | ||
|
||
return psr | ||
|
||
def load_psr_from_file(self, psr_file): | ||
|
||
"""Loads point source response from h5 file. | ||
Parameters | ||
---------- | ||
psr_file : str | ||
Full path to precomputed response file (.h5 file). | ||
""" | ||
|
||
logger.info("...loading the pre-computed point source response ...") | ||
psr = DetectorResponse.open(psr_file) | ||
logger.info("--> done") | ||
|
||
return psr | ||
|
||
def load_full_data(self, data_file, data_yaml): | ||
|
||
"""Loads binned data to be used as a template for the background estimate. | ||
Parameters | ||
---------- | ||
data_file : str | ||
Full path to binned data (must be .h5 file). | ||
data_yaml : str | ||
Full path to the dataIO yaml file used for binning the data. | ||
Notes | ||
----- | ||
In practice, the data file used for estimating the background | ||
should be the full dataset. | ||
The full data binning needs to match the PSR. | ||
""" | ||
|
||
self.full_data = BinnedData(data_yaml) | ||
self.full_data.load_binned_data_from_hdf5(data_file) | ||
|
||
return | ||
|
||
def mask_from_cumdist(self, psichi_map, containment, make_plots=False): | ||
|
||
""" | ||
Determines masked pixels from cumulative distribution of | ||
the point source response. | ||
Parameters | ||
---------- | ||
psichi_map : histpy:Histogram | ||
Point source response projected onto psichi. This can be | ||
either a slice of Em and Phi, or the full projection. Note | ||
that psichi is a HealpixMap axis in histpy. | ||
containment : float | ||
The percentage (non-inclusive) of the cumulative distribution | ||
to use for the mask, i.e. all pixels that fall below this value | ||
in the cumulative distribution will be masked. | ||
make_plots : bool | ||
Option to plot cumulative distribution. | ||
Returns | ||
------- | ||
sorted_indices : array | ||
Indices of sorted psichi array. | ||
arm_mask : array | ||
Boolean array specifying pixels in the psichi map that will be masked. | ||
Note | ||
---- | ||
The cumulative distribution is an estimate of the angular | ||
resolution measure (ARM), which is a measure of the PSF | ||
for Compton imaging. | ||
""" | ||
|
||
# Get healpix map: | ||
h = psichi_map | ||
m = HealpixMap(base = HealpixBase(npix = h.nbins), data = h.contents) | ||
|
||
# Sort data in descending order: | ||
sorted_data = np.sort(m)[::-1] | ||
|
||
# Calculte the cummulative distribution | ||
cumdist = np.cumsum(sorted_data) / sum(sorted_data) | ||
|
||
# Get indices of sorted array | ||
sorted_indices = np.argsort(h.contents.value)[::-1] | ||
|
||
# Define mask based on fraction of total exposure (i.e. counts): | ||
arm_mask = cumdist >= containment | ||
arm_mask = ~arm_mask | ||
|
||
# Plot cummulative distribution and corresponding masks: | ||
if make_plots == True: | ||
plt.plot(cumdist) | ||
plt.title("Cumulative Distribution") | ||
plt.xlabel("Pixel") | ||
plt.ylabel("Fraction of Counts") | ||
plt.savefig("cumdist.png") | ||
plt.show() | ||
plt.close() | ||
|
||
return sorted_indices, arm_mask | ||
|
||
def simple_inpainting(self, m_data, sorted_indices, arm_mask): | ||
|
||
"""Highly simplistic method for inpainting masked region in CDS. | ||
This method relies on the input healpix map having a ring | ||
ordering. For each masked pixel, it searches to the left (i.e. | ||
lower pixel numbers) until reaching the first non-zero pixel. | ||
It then search to the right (i.e. higher pixel numbers) until | ||
again finding the first non-zero pixel. The mean of the two | ||
values is used for filling in the masked pixel. | ||
Parameters | ||
---------- | ||
m_data : array-like | ||
HealpixMap object, containing projection of PSR onto psichi. | ||
sorted_indices : array | ||
Indices of sorted psichi array. | ||
arm_mask : array | ||
Boolean array specifying pixels in the psichi map that will be masked. | ||
Returns | ||
------- | ||
interp_list : array | ||
Values for the inpainting, corresponding to the masked pixels. | ||
""" | ||
|
||
# Get mean of masked data for edge cases (simple solution for now): | ||
# CK: It would be better if this were at least the mean of an | ||
# np masked array object, but a better method is anyways needed. | ||
masked_mean = np.mean(m_data) | ||
|
||
# Get interpolation values: | ||
interp_list_low = [] | ||
interp_list_high = [] | ||
for i in range(0,len(sorted_indices[arm_mask])): | ||
|
||
this_index = sorted_indices[arm_mask][i] | ||
|
||
# Search left: | ||
k = 1 | ||
search_left = True | ||
while search_left == True: | ||
|
||
if this_index-k < 0: | ||
logger.info("Edge case!") | ||
interp_list_low.append(masked_mean) | ||
search_left = False | ||
break | ||
|
||
next_value = m_data[this_index-k] | ||
if next_value == 0: | ||
k += 1 | ||
if next_value != 0: | ||
interp_list_low.append(next_value) | ||
search_left = False | ||
|
||
# Search right: | ||
j = 1 | ||
search_right = True | ||
while search_right == True: | ||
|
||
if this_index+j >= self.psr.axes['PsiChi'].nbins-1: | ||
logger.info("Edge case!") | ||
interp_list_high.append(masked_mean) | ||
search_right = False | ||
break | ||
|
||
next_value = m_data[this_index+j] | ||
if next_value == 0: | ||
j += 1 | ||
if next_value != 0: | ||
interp_list_high.append(next_value) | ||
search_right = False | ||
|
||
interp_list_low = np.array(interp_list_low) | ||
interp_list_high = np.array(interp_list_high) | ||
interp_list = (interp_list_low + interp_list_high) / 2.0 | ||
|
||
return interp_list | ||
|
||
def continuum_bg_estimation(self, data_file, data_yaml, psr, \ | ||
containment=0.4, make_plots=False,\ | ||
e_loop="default", s_loop="default"): | ||
|
||
"""Estimates continuum background. | ||
Parameters | ||
---------- | ||
data_file : str | ||
Full path to binned data (must be .h5 file). | ||
data_yaml : str | ||
Full path to the dataIO yaml file used for binning the data. | ||
psr : py:class:`PointSourceResponse` | ||
Point source response object. | ||
containment : float, optional | ||
The percentage (non-inclusive) of the cumulative distribution | ||
to use for the mask, i.e. all pixels that fall below this value | ||
in the cumulative distribution will be masked. Default is 0.4. | ||
make_plots : bool, optional | ||
Option to make some plots of the data, response, and masks. | ||
Default is False. | ||
e_loop : tuple, optional | ||
Option to pass tuple specifying which energy range to | ||
loop over. This must coincide with the energy bins. The default | ||
is all bins. | ||
s_loop : tuple, optional | ||
Option to pass tuple specifying which Phi anlge range to | ||
loop over. This must coincide with the Phi bins. The default | ||
is all bins. | ||
Returns | ||
------- | ||
estimated_bg : histpy:Histogram | ||
Estimated background as histpy object. | ||
""" | ||
|
||
# Define psr attribute: | ||
self.psr = psr | ||
|
||
# Load data to be used for BG estimation: | ||
self.load_full_data(data_file,data_yaml) | ||
estimated_bg = self.full_data.binned_data.project('Em', 'Phi', 'PsiChi') | ||
|
||
# Defaults for energy and scattering angle loops: | ||
if e_loop == "default": | ||
e_loop = (0,len(self.psr.axes['Em'].centers)) | ||
if s_loop == "default": | ||
s_loop = (0,len(self.psr.axes['Phi'].centers)) | ||
|
||
# Progress bar: | ||
e_tot = e_loop[1] - e_loop[0] | ||
s_tot = s_loop[1] - s_loop[0] | ||
num_lines = e_tot*s_tot | ||
pbar = tqdm(total=num_lines) | ||
|
||
# Loop through all bins of energy and phi: | ||
for E in range(e_loop[0],e_loop[1]): | ||
for s in range(s_loop[0],s_loop[1]): | ||
|
||
pbar.update(1) # update progress bar | ||
logger.info("Bin %s %s" %(str(E),str(s))) | ||
|
||
# Get PSR slice: | ||
h = self.psr.slice[{'Em':E, 'Phi':s}].project('PsiChi') | ||
|
||
# Get mask: | ||
sorted_indices, arm_mask = self.mask_from_cumdist(h, containment, make_plots=make_plots) | ||
|
||
# Mask data: | ||
h_data = self.full_data.binned_data.project('Em', 'Phi', 'PsiChi').slice[{'Em':E, 'Phi':s}].project('PsiChi') | ||
m_data = HealpixMap(base = HealpixBase(npix = h_data.nbins), data = h_data.contents.todense()) | ||
m_data[sorted_indices[arm_mask]] = 0 | ||
|
||
# Skip this iteration if map is all zeros: | ||
if len(m_data[m_data[:] > 0]) == 0: | ||
logger.info("All zeros and so skipping iteration!") | ||
continue | ||
|
||
# Get interpolated values: | ||
interp_list = self.simple_inpainting(m_data, sorted_indices, arm_mask) | ||
|
||
# Update estimated BG: | ||
for p in range(len(sorted_indices[arm_mask])): | ||
estimated_bg[E,s,sorted_indices[arm_mask][p]] = interp_list[p] | ||
|
||
# Option to make some plots: | ||
if make_plots == True: | ||
|
||
# Plot true response: | ||
m_dummy = HealpixMap(base = HealpixBase(npix = h.nbins), data = h.contents) | ||
plot,ax = m_dummy.plot('mollview') | ||
plt.title("True Response") | ||
plt.show() | ||
plt.close() | ||
|
||
# Plot masked response: | ||
m_dummy[sorted_indices[arm_mask]] = 0 | ||
plot,ax = m_dummy.plot('mollview') | ||
plt.title("Masked Response") | ||
plt.show() | ||
plt.close() | ||
|
||
# Plot true data: | ||
m_data_dummy = HealpixMap(base = HealpixBase(npix = h_data.nbins), data = h_data.contents.todense()) | ||
plot,ax = m_data_dummy.plot('mollview') | ||
plt.title("True Data") | ||
plt.show() | ||
plt.close() | ||
|
||
# Plot masked data: | ||
plot,ax = m_data.plot('mollview') | ||
plt.title("Masked Data") | ||
plt.show() | ||
plt.close() | ||
|
||
# Plot masked data with interpolated values: | ||
m_data[sorted_indices[arm_mask]] = interp_list | ||
plot,ax = m_data.plot('mollview') | ||
plt.title("Interpolated Data (Estimated BG)") | ||
plt.show() | ||
plt.close() | ||
|
||
# Close progress bar: | ||
pbar.close() | ||
|
||
return estimated_bg |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
from .LineBackgroundEstimation import LineBackgroundEstimation | ||
from .ContinuumEstimation import ContinuumEstimation |
Binary file not shown.
17 changes: 17 additions & 0 deletions
17
cosipy/test_data/inputs_crab_continuum_bg_estimation_testing.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
#----------# | ||
# Data I/O: | ||
|
||
# data files available on the COSI Sharepoint: https://drive.google.com/drive/folders/1UdLfuLp9Fyk4dNussn1wt7WEOsTWrlQ6 | ||
# The tra file is the first 10 seconds of the crab sim from mini-DC2, | ||
# and the ori file is the corresponding ori from mini-DC2. | ||
data_file: "GalacticScan.inc1.id1.crab2hr.extracted.testsample.tra.gz" # full path | ||
ori_file: "/project/majello/astrohe/ckarwin/COSI/COSIpy_Development/Continuum_BG_Estimation/Run_1/Data_Files/20280301_3_month.ori" # full path | ||
unbinned_output: 'fits' # 'fits' or 'hdf5' | ||
time_bins: 2659985.0 # time bin size in seconds. Takes int, float, or list of bin edges. | ||
energy_bins: [100., 1000., 10000.] # Takes list. Needs to match response. | ||
phi_pix_size: 45 # binning of Compton scattering anlge [deg] | ||
nside: 1 # healpix binning of psi chi local | ||
scheme: 'ring' # healpix binning of psi chi local | ||
tmin: 1835487300.0 # Min time cut in seconds. | ||
tmax: 1843467255.0 # Max time cut in seconds. | ||
#----------# |
Oops, something went wrong.