Skip to content

Commit

Permalink
f32 precision for compare-with-transformers tests
Browse files Browse the repository at this point in the history
Allow these tests to pass locally on devices where inference is run by default in FP16 (GPU) or BF16 (latest Xeon).
  • Loading branch information
helena-intel committed Jan 9, 2024
1 parent c64025d commit e7c15c8
Showing 1 changed file with 50 additions and 16 deletions.
66 changes: 50 additions & 16 deletions tests/openvino/test_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
import torch
from datasets import load_dataset
from evaluate import evaluator
from openvino.runtime import get_version
from parameterized import parameterized
from PIL import Image
from transformers import (
Expand Down Expand Up @@ -125,7 +126,10 @@ def test_load_from_hub_and_save_model(self):
loaded_model = OVModelForSequenceClassification.from_pretrained(self.OV_MODEL_ID, ov_config=ov_config)
self.assertTrue(manual_openvino_cache_dir.is_dir())
self.assertGreaterEqual(len(list(manual_openvino_cache_dir.glob("*.blob"))), 1)
self.assertEqual(loaded_model.request.get_property("PERFORMANCE_HINT").name, "THROUGHPUT")
if get_version() < "2023.3":
self.assertEqual(loaded_model.request.get_property("PERFORMANCE_HINT").name, "THROUGHPUT")
else:
self.assertEqual(loaded_model.request.get_property("PERFORMANCE_HINT"), "THROUGHPUT")

with tempfile.TemporaryDirectory() as tmpdirname:
loaded_model.save_pretrained(tmpdirname)
Expand Down Expand Up @@ -247,7 +251,9 @@ class OVModelForSequenceClassificationIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForSequenceClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForSequenceClassification.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForSequenceClassification.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -313,7 +319,9 @@ class OVModelForQuestionAnsweringIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForQuestionAnswering.from_pretrained(model_id, export=True)
ov_model = OVModelForQuestionAnswering.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForQuestionAnswering.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -386,7 +394,9 @@ class OVModelForTokenClassificationIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForTokenClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForTokenClassification.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForTokenClassification.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -430,7 +440,9 @@ class OVModelForFeatureExtractionIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForFeatureExtraction.from_pretrained(model_id, export=True)
ov_model = OVModelForFeatureExtraction.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModel.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -492,7 +504,9 @@ class OVModelForCausalLMIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForCausalLM.from_pretrained(model_id, export=True)
ov_model = OVModelForCausalLM.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForCausalLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -637,7 +651,9 @@ class OVModelForMaskedLMIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForMaskedLM.from_pretrained(model_id, export=True)
ov_model = OVModelForMaskedLM.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForMaskedLM.from_pretrained(model_id)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Expand Down Expand Up @@ -693,7 +709,9 @@ class OVModelForImageClassificationIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForImageClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForImageClassification.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForImageClassification.from_pretrained(model_id)
preprocessor = AutoFeatureExtractor.from_pretrained(model_id)
Expand Down Expand Up @@ -729,7 +747,9 @@ def test_pipeline(self, model_arch):

@parameterized.expand(TIMM_MODELS)
def test_compare_to_timm(self, model_id):
ov_model = OVModelForImageClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForImageClassification.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
timm_model = timm.create_model(model_id, pretrained=True)
preprocessor = TimmImageProcessor.from_pretrained(model_id)
Expand Down Expand Up @@ -781,7 +801,9 @@ class OVModelForSeq2SeqLMIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForSeq2SeqLM.from_pretrained(model_id, export=True)
ov_model = OVModelForSeq2SeqLM.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)

self.assertIsInstance(ov_model.encoder, OVEncoder)
self.assertIsInstance(ov_model.decoder, OVDecoder)
Expand Down Expand Up @@ -920,7 +942,9 @@ def _generate_random_audio_data(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForAudioClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForAudioClassification.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForAudioClassification.from_pretrained(model_id)
preprocessor = AutoFeatureExtractor.from_pretrained(model_id)
Expand Down Expand Up @@ -985,7 +1009,9 @@ def test_load_vanilla_transformers_which_is_not_supported(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForCTC.from_pretrained(model_id, export=True)
ov_model = OVModelForCTC.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)

set_seed(SEED)
Expand Down Expand Up @@ -1037,7 +1063,9 @@ def test_load_vanilla_transformers_which_is_not_supported(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForAudioXVector.from_pretrained(model_id, export=True)
ov_model = OVModelForAudioXVector.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)

set_seed(SEED)
Expand Down Expand Up @@ -1091,7 +1119,9 @@ def test_load_vanilla_transformers_which_is_not_supported(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForAudioFrameClassification.from_pretrained(model_id, export=True)
ov_model = OVModelForAudioFrameClassification.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)

set_seed(SEED)
Expand Down Expand Up @@ -1134,7 +1164,9 @@ class OVModelForPix2StructIntegrationTest(unittest.TestCase):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForPix2Struct.from_pretrained(model_id, export=True)
ov_model = OVModelForPix2Struct.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)

self.assertIsInstance(ov_model.encoder, OVEncoder)
self.assertIsInstance(ov_model.decoder, OVDecoder)
Expand Down Expand Up @@ -1223,7 +1255,9 @@ def _generate_random_audio_data(self):
def test_compare_to_transformers(self, model_arch):
model_id = MODEL_NAMES[model_arch]
set_seed(SEED)
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(model_id, export=True)
ov_model = OVModelForSpeechSeq2Seq.from_pretrained(
model_id, export=True, ov_config={"CACHE_DIR": "", "INFERENCE_PRECISION_HINT": "f32"}
)
self.assertIsInstance(ov_model.config, PretrainedConfig)
transformers_model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id)
processor = get_preprocessor(model_id)
Expand Down

0 comments on commit e7c15c8

Please sign in to comment.